ON THE EMBEDDING OF SCHWARTZ SPACES INTO PRODUCT SPACES

DANIEL J. RANDTKE

ABSTRACT. Every Schwartz space is embeddable into some sufficiently high power E^I of a given Banach space E if and only if E contains l_n^∞ uniformly.

In [13] Saxon showed that every nuclear space can be embedded in some sufficiently high power of every Banach space. In [2] Diestel and Lohman showed that a locally convex space that is embeddable in some sufficiently high power of every Banach space is a Schwartz space. In [11] we showed that every Schwartz space can be embedded in some sufficiently high power of c_0 . In [1] Bellenot gave examples of Schwartz spaces that are not embeddable in any power of l_p (1). In Theorem 2 below we characterize those Banach spaces <math>E such that every Schwartz space is embeddable in some sufficiently high power of E. In particular, Theorem 2 implies that every Schwartz space is embeddable in some sufficiently high power of every E_{∞} -space, and Corollary 5 implies that if E_p is a family of Banach spaces such that each E_p is an E_{p_p} -space ($1 \le p_p < \infty$), then there is a Schwartz space that is not embeddable in any power of E.

In [12] (and independently in [6]) it was shown that c_0 , equipped with the topology of uniform convergence on null sequences in the norm dual of c_0 is a universal Schwartz space; and in [12] we asked whether every \mathcal{E}_{∞} -space, equipped with the topology of uniform convergence on null sequences in the norm dual, is a universal Schwartz space. Theorem 2 below gives an affirmative answer to this question.

The proof of our main result (Theorem 2) depends in a very essential way on the important results of Figiel [3] concerning the factorization of compact linear operators through Banach spaces. Parts of the proof of Theorem 2 are similar to some of the proofs appearing in [11] and [12].

A linear operator between locally convex spaces is compact if it transforms some neighborhood of 0 into a relatively compact set. A locally convex space E is a Schwartz space if every continuous linear operator from E into a Banach space is compact. If $T: E \to F$ is a compact linear operator between Banach spaces, then (by [15, Theorem 1, p. 76]) there is a null sequence $\{a_n\}$ in the norm dual E' of E such that $||Tx|| \le \sup |\langle x, a_n \rangle|$ for every x in E; consequently, if E and E are Banach spaces and E denotes the topology on E

Presented to the Society, March 20, 1975; received by the editors January 9, 1975. AMS (MOS) subject classifications (1970). Primary 46A05, 46B99.

Key words and phrases. Compact linear operator, subspace factorization property, contains l_n^{∞} uniformly, universal Schwartz space, Schwartz space.

[©] American Mathematical Society 1976

of uniform convergence on null sequences in E', then (i) a linear operator T: $E \to F$ is compact if and only if T: $E[S] \to F$ is continuous, and (ii) E[S] is a Schwartz space. A Schwartz space E is universal if every Schwartz space is linearly homeomorphic to a linear subspace of some sufficiently high power E^I of E. A projective limit proj $\lim_{\mu\nu} (E_{\nu})$ of Banach spaces $\{E_{\nu}\}$ (for the definition of projective limit see [14, p. 52]) is compact if for each μ there is a $\nu > \mu$ such that $f_{\mu\nu}$: $E_{\nu} \to E_{\mu}$ is compact. If each $E_{\nu} = E$, we say that proj $\lim_{\mu\nu} (E_{\nu})$ is a projective limit of E-spaces and write proj $\lim_{\mu\nu} (E)$.

A continuous linear operator $T: E \rightarrow F$ between locally convex spaces factors through a subspace of a locally convex space G if there exist continuous linear operators $P: E \to G$ and $Q: P(E) \to F$ such that T = QP. A locally convex space E has the subspace factorization property if every compact linear operator between Banach spaces factors through a subspace of E. For a normed space E let $c_n(E) = \inf\{d(H, l_n^{\infty}): H \text{ is an } n\text{-dimensional } \}$ linear subspace of E, where $d(H, l_n^{\infty})$ denotes the Banach-Mazur distance between H and l_n^{∞} and where l_n^{∞} denotes the vector space of all n-tuples $\lambda = (\lambda_1, \dots, \lambda_n)$ of scalars equipped with the norm $\|\lambda\|_{\infty} = \sup |\lambda_k|$. A normed space E contains l_n^{∞} uniformly if $c_n(E) = 1$ for all n. Figiel [3, Theorem 6.1, p. 202] has shown that a Banach space has the subspace factorization property if and only if it contains l_n^{∞} uniformly. By combining Proposition 73 and Théorèmes 92 and 93 of Maurey [10] it follows that for $1 a linear subspace of a quotient space of an <math>L^p(X, \nu)$ measure space never contains l_n^{∞} uniformly. The following proposition implies that a \mathcal{L}_p space (for the definition and basic properties of \mathcal{L}_p -spaces see [7], [8] and [9]) contains l_n^{∞} uniformly if and only if $p = \infty$. The proof of the following proposition is based on a modification of the proof of [4, Theorem 9, p. 359]. The author would like to thank both T. Figiel and D. J. H. Garling for their comments concerning the constants $c_n(E)$ as well as their references to the work of Maurey [10].

PROPOSITION 1. Let E be a real $\mathcal{L}_{p,\lambda}$ -space and let K_G denote the universal Grothendieck constant [7, p. 279].

- (a) If $p = \infty$, then $c_n(E) = 1$.
- (b) If $2 \le p < \infty$, then $c_n(E) \ge n^{1/p}/(\lambda K_G)$.
- (c) If $1 \le p \le 2$, then $c_n(E) \ge n^{1/2}/(\lambda K_G)$.

[We note that if E is complex, then K_G in (b) and (c) above can be replaced by $2K_G$ (see the remark at the top of [7, p. 282]).]

PROOF. For any unexplained notation or terminology see [4] and [7]. If E is an \mathcal{L}_{∞} -space, then the sequence $\{c_n(E)\}$ is bounded and, by [3, Theorem 6.1, p. 202], $c_n(E) = 1$ for all n. Let $T: l_n^{\infty} \to H$ be an invertible linear operator from l_n^{∞} onto a subspace of l_n .

Case I. Suppose $1 \le p \le 2$. By the proof of [7, Theorem 4.3, p. 289] $\pi_2(T) \le K_G ||T||$. Since $T^{-1}T$ is the identity operator on l_n^{∞} , $\pi_2(l_n^{\infty}) \le \pi_2(T) ||T^{-1}|| \le K_G ||T|| ||T^{-1}||$. By [4, Theorem 10, p. 359], $n^{1/2} \le \pi_2(l_n^{\infty})$. Therefore, if E is a $\mathcal{E}_{p,\lambda}$ -space, then $c_n(E) \ge n^{1/2}/(\lambda K_G)$, and (c) follows.

Case II. Suppose $2 \le p < \infty$. By the proof of [7, Theorem 8.2, p. 320],

$$\begin{split} &\pi_{p,2}(T)\leqslant K_G\|T\|, \text{ where } \pi_{p,2}(T) \text{ is the } (p,2)\text{-absolutely summing norm of } T.\\ &\text{Since } T^{-1}T \text{ is the identity operator on } l_n^\infty, \ \pi_{p,2}(l_n^\infty)\leqslant \pi_{p,2}(T)\|T^{-1}\|\\ &\leqslant K_G\|T\|\ \|T^{-1}\|. \text{ But } n^{1/p}\leqslant \pi_{p,1}(l_n^\infty)\leqslant \pi_{p,2}(l_n^\infty). \text{ Therefore, if } E \text{ is a } \mathcal{L}_{p,\lambda}\text{-space, then } c_n(E)\geqslant n^{1/p}/(\lambda K_G), \text{ and (b) holds.} \end{split}$$

THEOREM 2. For a Banach space E the following are equivalent:

- (a) E has the subspace factorization property.
- (b) Every Schwartz space is linearly homeomorphic to a linear subspace of a compact projective limit of closed linear subspaces of E.
- (c) Every Schwartz space is linearly homeomorphic to a linear subspace of some sufficiently high power E^I of E.
- (d) E equipped with the topology of uniform convergence on null sequences in E' is a universal Schwartz space.
- (e) Every compact linear operator between Banach spaces factors through a subspace of some finite power E^I of E.
 - (f) E contains l_n^{∞} uniformly.

PROOF. (a) implies (b). Let F be a Schwartz space. By [11, 2.2 and 2.3, p. 173], F is linearly homeomorphic to a linear subspace of a projective limit proj $\lim f_{\mu\nu}(F_{\nu})$ of Banach spaces $\{F_{\nu} \colon \nu \in I\}$, where each $f_{\mu\nu} \colon F_{\nu} \to F_{\mu}$ (for $\nu > \mu$ in I) is compact. Since E has the subspace factorization property, there is, for each $\nu > \mu$ in I, a closed linear subspace $E_{\mu\nu}$ of E and continuous linear operators $P_{\mu\nu} \colon F_{\nu} \to E_{\mu\nu}$ and $Q_{\mu\nu} \colon E_{\mu\nu} \to F_{\mu}$ such that $f_{\mu\nu} = Q_{\mu\nu}P_{\mu\nu}$. Let $J = \{(\mu, \nu) \colon \mu > \nu \text{ in } I\}$. If (μ, ν) and (λ, δ) are in J, define $(\mu, \nu) > (\lambda, \delta)$ if and only if $\mu > \delta$ in I. J is then a directed set. Whenever $(\mu, \nu) > (\lambda, \delta)$ in J, let $g_{(\lambda, \delta)(\mu, \nu)} = P_{\lambda\delta}f_{\delta\mu}Q_{\mu\nu}$. It is easy to verify that the linear operator

$$T$$
: proj $\lim f_{\mu\nu}(F_{\nu}) \to \operatorname{proj lim} g_{(\lambda,\delta)(\mu,\nu)}(E_{\mu\nu})$

defined by

$$T(\lbrace x_{\nu}\rbrace) = \lbrace P_{\mu\nu}(x_{\nu}) : (\mu,\nu) \in J \rbrace$$

is a linear homeomorphism (into). Therefore, F is linearly homeomorphic to a linear subspace of the compact projective limit proj $\lim_{(\lambda,\delta)(\mu,\nu)}(E_{\mu\nu})$ of closed linear subspaces of E.

- (b) implies (c) is obvious.
- (b) implies (d). Let F be a Schwartz space. By (b) F is linearly homeomorphic to a compact projective limit proj $\lim f_{\mu\nu}(E_{\nu})$ of closed linear subspaces $\{E_{\nu} \colon \nu \in I\}$ of E. Let T denote the natural embedding of G = proj $\lim f_{\mu\nu}(E_{\nu})$ into E^I and let S denote the identity operator from E^I into $E[S]^I$, where S is the topology on E of uniform convergence on null sequences in E'. By [12, Proposition 1, p. 186], E[S] is a Schwartz space. Since S is weaker than the norm topology on E, E[S] is a Schwartz space. Since E[S] is a universal Schwartz space it suffices to show that E[S] is a universal Schwartz space it suffices to show that E[S] is compact. Let E[S] is a universal Schwartz space it suffices to show that E[S] is compact. By [15, Theorem 1, p. 76] and the Hahn-Banach theorem there is a null sequence E[S] in E[S] such that E[S] and the Hahn-Banach theorem there is a null sequence E[S] in E[S] such that E[S] sup E[S] sup E[S] sup E[S] is sup E[S]. Since E[S] for every E[S] is E[S] is sup E[S] sup E[S] sup E[S] since E[S] is sup E[S] sup E[S] since E[S] is sup E[S] since E[S] since E[S] sup E[S] sup E[S] since E[S] is sup E[S] since E[S] since E[S] sup E[S] since E[S] since E[S] since E[S] is sup E[S] since E[S] is sup E[S] since E[S
 - (c) implies (e). Let $T: F \to G$ be a compact linear operator between Banach

spaces. Let S denote the topology on F of uniform convergence on null sequences in F'. By [12, Proposition 1, p. 186], F[S] is a Schwartz space and by [15, Theorem 1, p. 76], $T: F[S] \to G$ is continuous. By (c) there is a linear homeomorphism $P: F[S] \to E^I$ from the Schwartz space F[S] into E^I ; and there is a (unique) continuous linear operator $S: P(F[S]) \to G$ such that T = SP. By [2, Proposition 1, p. 40], there exists a finite subset J of I and continuous linear operators $R: P(F) \to E^J$ and $Q: RP(F) \to G$ such that S = QR. Since S is weaker than the norm topology on F, $RP: F \to E^J$ is continuous (with respect to the norm topologies). Since T = SP = Q(RP), it follows that T factors through a subspace of E^J .

- (d) implies (e). Let $T: F \to G$ be a compact linear operator between Banach spaces. Let S denote the topology on E of uniform convergence on null sequences in E'. By replacing E by E[S] in the proof of "(c) implies (e)" above one can show that there is a finite set I such that I factors through a subspace of $E[S]^I$. That is, there exist continuous linear operators $P: F \to E[S]^I$ and $Q: P(F) \to G$ such that I = QP. Since I is barreled and I is compatible with the dual system I is easy to see that I is continuous (with respect to the norm topologies). Since I is weaker than the norm topology on I is continuous (with respect to the norm topologies). Therefore, I is I is continuous (with respect to the norm topologies). Therefore, I is I is continuous (with respect to the norm topologies). Therefore, I is I is continuous (with respect to the norm topologies). Therefore, I is I is continuous (with respect to the norm topologies).
- (e) implies (f). For each positive integer n let $a_n = [\ln(n+1)]^{-1}$. Clearly, $a_n \to 0$ and $n^c a_n \to \infty$ for every c > 0. Since the linear operator $T: c_0 \to c_0$ defined by $T\lambda = \{a_n\lambda_n\}$ is compact, (e) implies that T factors through some finite power E^I of E. By [3, Theorem 6.1, p. 202], E^I contains l_n^∞ uniformly, whenever E^I is equipped with a norm that is compatible with the product topology of E^I . To complete the proof it suffices (using a simple induction argument) to show that:

LEMMA 3. If F and G are Banach spaces such that $F \times G$ contains l_n^{∞} uniformly whenever $F \times G$ is equipped with a norm that is compatible with the product topology of $F \times G$, then either F or G contains l_n^{∞} uniformly.

PROOF OF LEMMA 3. Let n be a fixed positive integer. Choose $\delta > 0$ so that $1 + \delta < (1 + n^{-1})(1 - 2^{n-1}\delta)$. Equip $F \times G$ with the norm $\|(f,g)\|$ = $\sup(\|f\|, \|g\|)$. By assumption there exist points $(f_1, g_1), \ldots, (f_{2n}, g_{2n})$ in $F \times G$ such that

(i)
$$\|\lambda\|_{\infty} \leq \sup \left(\left\| \sum_{k=1}^{2n} \lambda_k f_k \right\|, \left\| \sum_{k=1}^{2n} \lambda_k g_k \right\| \right) \leq (1+\delta) \|\lambda\|_{\infty}.$$

whenever $\lambda = (\lambda_1, \dots, \lambda_{2n})$ is a 2n-tuple of scalars and $\|\lambda\|_{\infty} = \sup |\lambda_k|$. In particular, for each $1 \le k \le 2n$ either $\|f_k\| \ge 1$ or $\|g_k\| \ge 1$. Therefore, by interchanging F and G and by reindexing if necessary, we may assume that $\|f_k\| \ge 1$ for every $1 \le k \le n$. Let $\lambda = (\lambda_1, \dots, \lambda_n)$ be an n-tuple of scalars and choose $1 \le k \le n$ so that $|\lambda_k| = \|\lambda\|_{\infty} = \sup |\lambda_j|$. By (i) it follows that

(ii)
$$\|\epsilon_1 \lambda_1 f_1 + \cdots + \epsilon_n \lambda_n f_n\| \leq (1 + \delta) \|\lambda\|_{\infty}.$$

whenever $(\epsilon_1, \ldots, \epsilon_n)$ is an *n*-tuple of plus or minus ones. Suppose that

(iii)
$$\|\lambda_1 f_1 + \cdots + \lambda_n f_n\| < (1 - 2^{n-1}\delta) \|\lambda\|_{\infty}.$$

Since

$$2^{n-1}\lambda_k f_k = \bar{2}(\epsilon_1 \lambda_1 f_1 + \cdots + \epsilon_n \lambda_n f_n)$$

where the sum is taken over the 2^{n-1} *n*-tuples $(\epsilon_1, \ldots, \epsilon_n)$ of plus or minus ones with $\epsilon_k = 1$, (ii) and (iii) imply that

$$\begin{aligned} 2^{n-1} \|\lambda\|_{\infty} &\leq \|2^{n-1} \lambda_k f_k\| \\ &< (1 - 2^{n-1} \delta) \|\lambda\|_{\infty} + (2^{n-1} - 1)(1 + \delta) \|\lambda\|_{\infty} \\ &\leq 2^{n-1} \|\lambda\|_{\infty}, \end{aligned}$$

a contradiction. Therefore, (iii) is false and

(iv)
$$(1 - 2^{n-1}\delta) \|\lambda\|_{\infty} \le \|\lambda_1 f_1 + \cdots + \lambda_n f_n\| \le (1 + \delta) \|\lambda\|_{\infty}$$

whenever $\lambda = (\lambda_1, \ldots, \lambda_n)$ is an *n*-tuple of scalars. Let H denote the linear span of $\{f_1, \ldots, f_n\}$. Since $1 + \delta < (1 + n^{-1})(1 - 2^{n-1}\delta)$, (iv) implies that $d(H, l_n^{\infty}) < 1 + n^{-1}$. Therefore, either F or G contains " $(1 + n^{-1})$ -copies" of l_n^{∞} for arbitrarily large n, and the lemma follows.

The following corollary is a generalization of [11, Theorem 2.4, p. 173].

COROLLARY 4. If E is an \mathcal{L}_{∞} -space (in the sense of [5]), then every Schwartz space is linearly homeomorphic to a linear subspace of a compact projective limit of E-spaces.

PROOF. Let F be a Schwartz space. Since E contains l_n^∞ uniformly, Theorem 2 implies that F is linearly homeomorphic to a linear subspace of a compact projective limit proj $\lim g_{\mu\nu}(E_{\nu})$ of closed linear subspaces of E. Since E is an \mathcal{E}_{∞} -space, [8, Theorem 4.1, p. 336] implies that each $g_{\mu\nu}$: $E_{\nu} \to E_{\mu}$ can be extended to a compact linear operator $f_{\mu\nu}$: $E \to E$. It is now easy to verify that proj $\lim g_{\mu\nu}(E_{\nu})$ is linearly homeomorphic to a linear subspace of proj $\lim f_{\mu\nu}(E)$.

COROLLARY 5. If $\{E_{\nu}\}$ is a family of Banach spaces such that every Schwartz space is linearly homeomorphic to a linear subspace of some sufficiently high power $(\prod E_{\nu})^{I}$ of $\prod E_{\nu}$, then at least one of the Banach spaces E_{ν} contains l_{n}^{∞} uniformly.

PROOF. This follows from the proof of Theorem 2 by making minor modifications in the proofs of "(c) implies (e)" and "(e) implies (f)".

COROLLARY 6. If E is a locally convex space such that every Schwartz space is linearly homeomorphic to a linear subspace of some sufficiently high power E^I of E, then E locally contains l_n^∞ uniformly—that is, there is a fundamental system $\mathfrak A$ of closed balanced convex neighborhoods of 0 in E such that for each U in $\mathfrak A$ the associated normed space E_U (see [5, p. 208]) contains l_n^∞ uniformly.

PROOF. Let V be a neighborhood of 0 in E and let \mathfrak{A}_{V} denote the set of all closed balanced convex neighborhoods of 0 in E that are contained in V. To complete the proof it suffices to show that there is a $U \in \mathfrak{A}_{V}$ such that E_{U} contains I_{n}^{∞} uniformly. Since \mathfrak{A}_{V} is a fundamental system of neighborhoods of 0, it follows (from the proof of [14, 5.4, p. 53]) that E is linearly homeomorphic to a linear subspace of $\Pi\{E_{U}: U \in \mathfrak{A}_{V}\}$. By Corollary 5

there is a $U \in \mathcal{U}_V$ such that the completion of E_U contains l_n^∞ uniformly. A simple density argument can now be used to show that E_U contains l_n^∞ uniformly.

Corollary 6 implies, in particular, that every universal Schwartz space locally contains l_n^{∞} uniformly. This provides a partial answer to [11, Question 1, p. 175].

REFERENCES

- 1. S. F. Bellenot, Factorable bounded operators and Schwartz spaces, Proc. Amer. Math. Soc. 42 (1974), 551-554. MR 48 #6899.
- 2. J. Diestel and R. H. Lohman, Applications of mapping theorems to Schwartz spaces and projections, Michigan Math. J. 20 (1973), 39-44. MR 47 #5541.
- 3. T. Figiel, Factorization of compact operators and applications to the approximation problem, Studia Math. 45 (1973), 191-210.
- 4. D. J. H. Garling and Y. Gordon, Relations between some constants associated with finite dimensional Banach spaces, Israel J. Math. 9 (1971), 346-361.
- 5. J. M. Horváth, *Topological vector spaces and distributions*, Vol. I, Addison-Wesley, Reading, Mass., 1966. MR 34 #4863.
- 6. H. Jarchow, Die Universalität des Raumes C₀ für die Klasse der Schwartz-Räume, Math. Ann. 203 (1973), 211-214. MR 47 #9235.
- 7. J. Lindenstrauss and A. Pełczyński, Absolutely summing operators in L_p -spaces and their applications, Studia Math. 29 (1968), 275–326. MR 37 #6743.
- 8. J. Lindenstrauss and H. P. Rosenthal, The \mathcal{E}_p spaces, Israel J. Math. 7 (1969), 325–349. MR 42 #5012.
- 9. J. Lindenstrauss and L. Tzafriri, Classical Banach spaces, Springer-Verlag, Berlin and New York, 1973.
- 10. B. Maurey, Théorèmes de factorisation pour les opérateurs linéaires à valeurs dans les espaces L^p , Asterisque, 11, Société Mathématique de France, 1974.
- 11. D. J. Randtke, A structure theorem for Schwartz spaces, Math. Ann. 201 (1973), 171-176. MR 48 #4691.
- 12. _____, A simple example of a universal Schwartz space, Proc. Amer. Math. Soc. 37 (1973), 185-188. MR 47 #754.
- 13. S. A. Saxon, Embedding nuclear spaces in products of an arbitrary Banach space, Proc. Amer. Math. Soc. 34 (1972), 138-140. MR 47 #7369.
 - 14. H. H. Schaefer, Topological vector spaces, Macmillan, New York, 1966. MR 33 # 1689.
 - 15. T. Terzioğlu, A characterization of compact linear mappings, Arch. Math. 22 (1971), 76-78.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF GEORGIA, ATHENS, GEORGIA 30602