
PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 55, Number 1, February 1976

THE NUMBER OF SEMIGROUPS OF ORDER n

DANIEL J. KLEITMAN1, BRUCE R. ROTHSCHILD AND JOEL H. SPENCER1

Abstract. The number of semigroups on n elements is counted asympto-

tically for large n. It is shown that "almost all" semigroups on n elements

have the following property: The n elements are split into sets A, B and there

is an e e B so that whenever x, y E A, xy G B, but if x oty is in B, xy = e.

1. The problem. Fix a labelled n-element set [n] = {1,... ,n). A semigroup

SG on [«] is an associative binary operation (denoted by concatenation). Let

Sin) denote the number of semigroups on [n]. We find an asymptotic

approximation to S{n). Let

(u) /«= (;)i+(«-')2.

Theorem 1.

(i.2) sw = [im] (i + o(i))-

Define t0 — 'o(") as that t which maximizes /(e). One can show

(1.3) t0 ~ n/{2 In n)

and/(e) has a sharp peak at t0. Equation (1.2) simplifies to

(1.4) Sin) = f{t0){l + oil))

except in those "rare" instances when/(e0 + 1) or/(e0 — 1) are "near"/(e0).

For the remainder of the paper we adopt the convention that any inequality

about functions of n is meant to be true only for all n sufficiently large, where

how large depends on the statement.

2. Construction of the semigroups. Let A E [n], \A\ = n — t, t g 1. Set

B = A0. We construct a family §(/!) of semigroups on [n] as follows:

(i) Select e E B.

(ii) For x, y G A define xy to be an arbitrary member of B.

(iii) For x G B or y G B define xy = e.
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Then for all x, y, z G [n], xy G B so (xy)z = e. Similarly, x(yz) = e. This

yields

(2.1) |§(^)| = ,i+(»-')2

semigroups. Call a semigroup SG of type T (for trivial) if it is of the above

form for some A, e.

Let §X(A) denote those semigroups SG G §(A) such that for no a G A is ax

= xa = e for all x G [/?]. Then

(2.2) |S,C4)| = (I + o(l))\UA)\

and the SX(A) are disjoint. Hence, there are (2"=o/(0)0 + °0)) semigroups

of type T. This implies

(2.3) S(n)^ [S/W](l+o(l)).

3. An upper-bound. Let 5"(A) denote the family of semigroups for which A

is a minimal (in cardinality) set of generators. (I.e. all x G [n] may be

expressed as x = ax ■ ■ ■ ak for some k ^ 1, ax, ..., ak G A.) Set N(A)

= \<5(A)\. Then

(3 1) S(n) =g    2    N(A).

If ax, a2 G A then

(3.2) axa2 G {ax,a2} U B,

as otherwise A - {ax a2) would be a smaller set of generators. We bound A (A)

by constructing all SG G ^(A) as follows:

(i) For ax,a2 G A choose axa2 G [ax,a2] U B. (This may be done in

(/ + 2)(""')2 ways.)

(ii) Let A' be a minimal (in cardinality) subset of A so that A 'A 2 A A D B.

For each b G AA D B there exist ab', ab so that b = ab'ab. The set X

= [a'b: b G B) satisfies XA D AA D B, so that

(3.3) \A'\ 2i |A| 2i \B\ = t.

Since A' G A, \A'\ ^ min(t,n - t).

Now for all a G A', b G B choose ab arbitrarily. (This may be done in at

most «|/('I!B| ^ n'^(t,n-t) ways_)

Claim 1. SG is determined by A A U A'B.
Proof. As all x, y G [n] are finite products of ^4's, it suffices to show that

all axa2 ■ ■ ■ ak are determined. We show this by induction, it being trivial for

k s= 2. For k > 2 set ax a2 = b. If b G A, ax a2 ■ ■ ■ ak = ba$ ■ ■ ■ ak is deter-

mined by induction. If b $ A, b G B n A A so b = cd for some c G A', d

G A. Then ax • • • ak = c(<Za3 • • • ak). Now x = da3 ■ ■ ■ ak is determined by

induction and cx is determined since A'[n] is determined.

We have shown
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(3.4) NiA) =S {t + 2)("-')2«"nin(''"-').

Thus there are at most (")(f + 2y"~'' n'mm(<'"-'> semigroups having a minimal

set of generators of cardinality t.

From (3.1), (3.4),

(3.5) S(«) =  2 ^Vr + 2)("~')2«'min(''''-')

so that

(3.6) s(n) = [«/(2e+o(l))ln«]"2.

Let e > 0 be fixed and small (e = 10~6 will do). By elementary calculations

and (2.3),

2' ("\t + 2)("-')Vmm(/'"-') = oiS{n))

where 2' runs over /, \t — t0\ > e«/ln «. Thus: Almost all semigroups are in

^A) for some A, \A\ = n — t, \t — /0I = en/In n. We restrict our attention to t

in this range for the duration of this paper.

4. The easy case. Our ultimate objective is to show

(4.1) N(A) = e1+<"-')2(l + 0(1))

for \A| = n — t, \t — fnl < e«/ln n. In this section we show the corresponding

result for a restricted class of semigroups.

We say that a semigroup in 5iA) has property E (for easy) if ax, a2

E A imply ax a2 ¥= ax and ax a2 ¥= a2. Let 5"*(/4) denote the subclass of S{A)

satisfying property E and ,/V*(/U = |5"*(^)|. We shall show

(4.2) N*{A) = r1+("-')2(i +0(1))

for \A\ = « - t, \t - t0\ < ert/ln «.

For5G G 5* iA) set

Gax = {b E B: ab = x)        for a E A, x E [«].

Set

Fia) = max|c7aJ
xE.[n]

and

(4.3) 8 = t - min Fid).
v       ' a£A

The number 8 defined above may be thought of as follows. Consider the

rows aB, a E A. Each row has a most frequent entry. 8 gives a uniform upper

bound (over a E A) for the number of entries in aB not equal to the most

frequent one. Trivial semigroups have 5 = 0. Let S*{A) be those semigroups

in 5"* iA) with given <5 and A^*(^) = |5"s*(/4)|.
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We now bound N*(A). The semigroups in 5* (A) may be constructed by the

following procedure.

(i) Pick g G A so that t — 8 = F(g). (This may be done in n — t g n ways.)

(ii) Set A' equal a minimal subset of A containing g so that A'A 2 A A n B.

fix A'. (Since \A'\ 2i t, this may be done in at most n' ways.)

(iii) Determine A'B. For each a G A', F(a) g / — 8; so there exists x G [n],

\Gax\ g / - 8. Now a5 may be determined by selecting x (in at most n ways),

Gax (in 2'=,_« (,) = 1 + '8 = ns ways), and determining aZ> for b G B

- Gax (in WISHG<"I s n6 ways.) Thus each row has at most n2S+x possibilities,

and therefore A'B has at most n(2S+x)^ g n(2S+,)' possibilities.

(iv) Determine gA. For each a G A we have ga G B (by property E). There

are at most t"~' possible gA.

(v) Define an equivalence class on A by a = b if ga — gb. Since gA G B

there are at most / equivalence classes and we select representatives g = ax,

..., as, s = t, of the classes in an arbitrary fashion. For 2 ^ i ^ s we

determine atA, each in at most t"~' ways, for a total of ?("_'Xi_1) possibilities.

(vi) Determine the remainder of AA. Let a, c G A, a ¥" ax, ..., as. Then

a = a, for some i, 1 Si /' S= s. Then

g(ac) = (ga)c = (gat)c = g^-c)    and    ac G C?gg(ac).

Now a,c has already been determined, so g(a,c) has been determined, as has

Gggtac)- From tne definition of 8,

Kg(a,c)\  ^  < ~ *■

The product ac can be determined in at most t — 8 ways. This holds for

(n - t)(n - t - s) pairs (a,c), giving (t - syn~'^"~'~s) possibilities.

By Claim 1 the semigroup is now determined.

(4.4) NS*(A) S nn'nW+x*t{n-')s(t - 8)<»-'X*-»-*)

(4.5) g /?i+(2«+2),(1 _ g/^d+^O)^/!-/)2

and

(4.6) 2 NS*(A) = op+^-On

by an elementary calculation (using t ~ n/(2 ln n)). That is, almost all

semigroups in 5*(A) have 8 = 0. Intuitively, for S g 1, N*(A) = o(t^"~l) )

because for most a, c G A the product ac can take at most (t — 8) values

versus / in the 8 = 0 case.

Call an SG G i5*(A) absurd if 8 = 0 but is not trivial. Since 8 = 0 each aB,

a G A, is constant.

Claim 2. If SG G "J*(A) and AB = constant, then SG is trivial.

Proof. Say AB = e. For any a G A, aa G B so aaa = e. Now e G A,

since, if it were, A — [e] would generate e and, therefore, [n], contradicting the

minimality of \A\. So e G B. Let b G B, x G [«]. Since A generates [«], b
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= a, • ■ • as is S 2), x = ai+1 • • • as+l it = 1) so ox = ax ■ ■ ■ as+l = e as s

+ /^3. That is, B[n] = c so 5C7 is trivial.

C/a/'w 3. Let SCT G 5*iA), 8 = 0, ax, a2 E A, ax B = e, # e2 = a2fi.

Thenar n a2^ = 0-
Proof. Suppose x, y G A, axx = a2y. For any z G ^4, xz, yz E B so ex

= axixz) = iaxx)z = {a2y)z = a2(yz) = e2, a contradiction.

The conditions on absurd SG E <5*{A) imposed by Claim 3 are sufficiently

stringent that we may easily show (details omitted) that they are "small" in

number (i.e. o(tx+(-"~'' )). Hence, almost all SG E 5"*(/4) are trivial, yielding

(4.2).

5. The general case-outline. Theorem 1 is implied by (4.1). We give a brief

outline of the proof of (4.1).

We let ^i{A,8,...) and N{A,8,...) denote the set, and number, of

semigroups with parameters A, 8, .... By NiA,8,...) "small" we always

mean in comparison to t^H~t' .

For a particular counting scheme let v{a) denote the number of possible

rows aA and u(a) = v{a)/t"~'. By (3.2) all via) = (/ + 2)"~' so ju(a) = «4.

For a E A set

Sa = {x G A: ax = x)   and    L = {a E A: \Sa\ = .Olrt},        / = \L\.

If a E L there are less than 2" choices for Sa and «"" choices for «([«] — Sa).

There are less than 2"n"n = t^99+°^x''" choices for a[n]. We may determine

SG E 5{A,L) by determining LA, then {A - L) A, then defining A' and

determining A'B. If / is "large", N{A,L) is "small". Most SG E ?T(^) have /

= o(rt) -which we assume for the duration.

We modify the bounding of N^{A) in §4 by (4.4) to NiA,L,8). We need a

slightly different definition for 8:

(5.1) 8 = t -   min   Fia).
aeA-L

We fix g E A - L so that F{g) = t - 8. We define A' as the minimal set so

that {A' U L)A 2 AA n B. We bound NiA,L,8) by first determining L[«]
and then following steps (i), ..., (vi) of §4. The equivalence classes, in step

(v), are defined on A - L and there will be s g / + 1 + .Olrt such classes

(when ga = a, {a} is an equivalence class). We find

N{A,L,8) =g t(-99MD)nlnntn(2S+l)t

(5.2)
• (/ + 2)*("-')(r + 2 - sf-'-'-^-'K

For 5 = 3, NiA,L,8) is "small". We assume 5 = 2 for the duration. Note this

implies \aB\ = 3 for all a E A - L.

Set

I = {a E A — L: aa = a),

V = {a E A — L — I: 3x G A — L, a ¥= x, ax = a or xa = a),

\I\ = i\V\ = v.
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For a G I, x G A - {a},

ax = (aa)x = a(ax) G [a,x] U aB,

at most 5 possibilities, so v(a) ^ 5""', /x(a) = ?"(-i+«(i)).

Suppose a G V, x G A — L, ax = a or xa = a and xA has already been

determined.

Case 1. xa = a. For all c G A,

ac = (xa)c = x(ac) G {xa,xc) U xB

at most 5 possibilities. Then v(a) ^ 5""', p.(a) g ,»(-'+<>0)),

Case 2. ax = a. For c G A, xc ¥= c we have

ac = (ax)c = a(xc) G {ax} U aB,

at most 4 possibilities. We determine aB (at most n' ways), then aA. Since

x G F, at most .01/2 c's have xc = c. For these there are n possible ac. Then

v(a) g n'5V01" = /A01^')), so ,x(a) g ?"(-"+^0).

If / is large we may bound N(A,I) by determining IA, then (y4 — I)A, then

y4'/l. We assume i = o(n) for the duration.

If v is large we may bound N(A, V) by determining (A — V)A, then VA, then

A'A. (A technical problem arises. For a G V, ax = a or xa = a, we want to

determine aA after xA. But perhaps x G F. One may order V (trying any

ordering and its reverse) so at least half the a G V come after their respective

x.) We may assume v = o(n) for the duration.

We bound N(A,L,I, V,8), where /, i, v = o(n). We determine xA for x

G L U Z U K-and when xA is needed before aA, a G V. We define equiva-

lence classes on the remaining x G A, determining xA first for x a represen-

tative, then for the remainder of A. We achieve an expression analogous to

(5.2) with a factor of (t — §)m("-'' where m, the number of "remaining" A, is

at least (.99 + o(\))n. The expression is "small" for <S > 0. We assume 5 = 0.

IfLUZU K # 0 we have factors ju.(a) S r(-99+o(i))n that are not ade.

quately counterbalanced so that N(A,8,L,I, V) is "small". Most semigroups

have 6 = 0, L = I = F = 0 and are trivial.

(A final note on "filling in details". One shows N(A,8,L,...)

:§ t~""[("-'> and there are less than, say, 5" possible 8, L, ... so that

2 N(A,8,L,...) taken over all 8, L, ..., except 8 = 0, L = • ■ ■ = 0, is

small.)
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