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LOCALLY COMPACT GROUPS
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Abstract. Let H be the fixed points of a family of automorphisms of a

locally compact group G with G/H finite invariant measure. It is proved in

this paper that when the 1-component of G is open, G/H is compact.

Let G be a locally compact group and H be a closed subgroup of G such

that G/H admits a finite G-invariant measure. Then G/H is compact if G is a

connected Lie group and H has finitely many connected components [6,

Mostow], or if G is a /?-adic group and H is discrete [8, Tamagawa]. Recently,

Greenleaf-Moskowitz-Rothschild [1], [2] proved that G/H is compact for

disconnected Lie groups G with H consisting of the fixed points of a family of

automorphisms of G (see Lemma 3 below). Under similar restrictions on H as

in [1], the author [7] obtained the same result for linear algebraic groups

defined over locally compact fields. Now in this paper, we prove the following

theorem, which extends Lemma 3 to non-Lie groups.

Theorem. Let G be a locally compact group and H be a closed subgroup

consisting of the fixed points of a family of automorphisms of G such that G/H has

a finite G-invariant measure. If G is a-compact with its 1 -component open then

G/H is compact. In particular, this is the case when G is connected or when G is

a-compact and locally connected.

The author wishes to thank Professor M. Moskowitz for his encouragement

and suggestions during the preparation of this work.

1. Preliminaries and notations. Throughout this paper we consider only o-

compact groups (i.e. groups which are countable union of compact subsets).

For a locally compact group G, let C70 denote its 1-component, 21(G) the group

of topological automorphisms of G and $s(G) = {ax\x EG) the subgroup of

inner automorphisms of G. Let K(G0) denote the maximal compact normal

subgroup of G0 (the existence of such a group is proved in [4]). For a subset

A of 31(G), let GA = [g E G\a(g) = g,a E A). It is easy to see that GA is a

closed subgroup of G.

A locally compact space X is called a homogeneous G-space if G acts on A

transitively. Thus when H is a closed subgroup of G, G/H is a homogeneous

G-space with the action of G on G/H by left translation. A regular Borel

measure m on A is G-invariant if w(g£) = w(F) for all g E G and all Borel

subsets E of A.

Received by the editors June 25, 1974 and, in revised form, February 25, 1975.

AMS (MOS) subject classifications (1970).Primary 22D05, 28A70.
Key words and phrases. Invariant measures, homogeneous spaces.

© 1976, American Mathematical Society

170



HOMOGENEOUS SPACES OF LOCALLY COMPACT GROUPS 171

Lemma 1. Let G and G' be two locally compact groups and X (resp. A') be a

homogeneous G-space (resp. G'-space). Let tt: G —» G' be an open and continuous

epimorphism and tj: A —» X' be a continuous surjection such that rx(gx)

= «(gMx)(g G G,x G X).

We have the following:

(i) tj is an open map.

(ii) If X admits a finite G-invariant measure, then X' admits a finite G '-invariant

measure.

(iii) Z/tj is bijective (i.e. if the actions ofGonX and of G' on X' are equivalent),

then

(a) the converse of (ii) holds, and

(b) X is compact if and only if X' is compact.

Proof, (i) Let U be a neighborhood of some x in A; we show that r/((7)

contains an open neighborhood of tj(x). Since G and G' are a-compact, it

follows that the mappings

G -* X, G' -» A',

g^ gX, g' H-> g'l\(x),

are both open and continuous (see e.g. [3, p. 7]). Let V be an open

neighborhood of 1 in G such that Vx G U. Hence tr(V)r\(x) = rt(Vx) is an

open neighborhood of r/(x) contained in r/((7).

(ii) Let m be a finite G-invariant measure on X. Define m! on A': m'(E)

= m(r\~x(E)) for every Borel set E of A". Then m' is a finite regular Borel

measure on X'. Now for any g' G G', there exists a g G G such that

^(g) — g' and ^'(g'F) = gT)~{(E)- Therefore

m'(g'E) = m(n-x(g'E)) = m(gn-x(E)) = m'(E).

(iii) (b) is obvious since 17 is now a homeomorphism. For (a): Let rri be a

finite G'-invariant measure on X' and define m on A: m(E) = m'(n(E)) for

any Borel subset E of X. It is easy to see that m is a finite G-invariant regular

Borel measure.

Lemma 2 [6, Lemma 2.5]. Let H G F be closed subgroups of a locally compact

group G such that G/H admits a finite invariant measure m. Then G/F and F/H

admit finite invariant measures of which m is a product.

Lemma 3 [2, Theorem 2]. If G is a Lie group and m(G/GA) is finite, then G/GA

is compact.

Lemma 4 [5, Theorem 2.3]. If tr: P —> P' is a continuous epimorphism of

connected compact groups, then tt maps the center of P onto the center of F.

2. Proof of the theorem. First we show that it suffices to consider the case

when G is connected. G0 is open so G0 GA is a closed subgroup of G. Hence,

by Lemma 2, both G/G0GA and G0GA/GA admit invariant measures. Since

G/G0GA is discrete, G/G0GA is finite. On the other hand, the GnG^-space

G0GA/GA is equivalent to the G0-space G0/G0 n GA and it follows from

Lemma 1 that G0/G0 n GA admits a finite invariant measure. But G0 D GA



172 K.-Y. C.  SIT

= iG0)A' where A' = {a\G \a E A] is a subset of 2l(G0). And so by assump-

tion Gc,/G0 n GA is compact and, by Lemma 1, G0GA/GA is compact. Thus

G/GA compact follows. This completes the proof of the reduction to the case

when G is connected.

From now on G is connected and we proceed to prove the theorem in four

cases.

Case ii). KiG) = {1}.

Let P be a compact normal subgroup of G such that G/P is a Lie group.

Since PKiG) is a compact normal subgroup containing A"(G) and A"(G) is

maximal, it follows that P C PKiG) = AT(G) = {1}. Therefore G is a Lie

group. Thus by Lemma 3, G/GA is compact.

Case iii). KiG\ = {l).

Let G' = G/KiG) and -n: G —> G' be the projection. For any a E 21(G),

a(flf(G)) is again a compact normal subgroup of G and so as in Case (i),

aiKiG)) E KiG) (i.e. KiG) is characteristic in G). Hence a induces an

automorphism a' of G' such that for any g E G, a'itrig)) = 7r(a(g)). Let

A' = [a'\a E A) and G'A- = [g' E G'\a'ig') = g',a E A'}. Define a map-

ping

n:G/GA^G'/G'A,   ifaGA) = v(g)GA> ■

It is easy to see that v is a continuous surjection and so, by Lemma 1, G'/G'A'

has a finite G'-invariant measure. Since the pull back of any compact normal

subgroup of G' by tt is a compact normal subgroup of G contained in A"(G),

it follows that AT(G') = {1}. Hence it follows from Case (i) that G'/G'A. is

compact.

Let HA = {g G G|a(g)g_1 G KiG),a E A). It is obvious that HA

= ■7T~xiG'A) is a closed subgroup of G. Define a mapping

*: G///4 -» G'A?;,.,   iKs*,) = <g)G'A..

Then it is easy to see that ip is a continuous bijection and so, by Lemma 1,

G/HA is compact. Hence for G/GA to be compact, it remains to show that

HA/GA is compact.

Since GA E HA and G/GA has a finite G-invariant measure, it follows from

Lemma 2 that HA/GA has a finite //^-invariant measure. As G is connected, it

is obvious that 3(G)|^(G) C 2I(A:(G))0. Let 3*(/((G)0) denote the subgroup

of inner automorphisms of KiG) induced by elements of AT(G)0; then

2t(tf(G))0 = 3,*(*(G)0) K Iwasawa]. Since A-(G)0 = (1), [G,AT(G)] = {1}.

So for any gx, g2 in HA, we have

afei&HSl&r1 = "(SiXafe)^"1)^"1 = ateitefV&tei"'-

Hence the mapping/: HA -» A"(G),/(g) = a(g)g_1 is a homomorphism with

G^ as its kernel. Hence GA is normal in //, and HA/GA is compact. This

completes the proof of Case (ii).

Case (iii). The center Z of A"(G)0 is trivial.

Since A"(G )0 is characteristic in KiG) and AT(G) is characteristic in G, it

follows that KiG)0 is characteristic in G. Let G' = G/A:(G)0 and tt: G ^ G'

be the projection. Then as in Case (ii) A induces a family A' of automorphisms
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of G' such that G'/G'A admits a finite G'-invariant measure. Since it is easy to

see that (K(G'))0 = {1}, it follows from Case (ii) that G'/G'A- is compact.

Let C = {g G G\gkg~x = k,k G K(G)0); then it follows from [4] that

G = AT(G)0C. Here K(G)0 n C = Z = {1} and [K(G)0,C] = {1}. And so

G = K(G)0 X C is a direct product and <mc: C —> G' is an isomorphism. Now

let CA = (c G C|a(c) = c,a G A}. We shall show that ir(CA) = G>. It is

obvious that tr(CA) G G'A'. To see the converse inclusion, let g' G G'A>; then

there is a unique c G C such that 7r(c) = g'. So for any a G A, tt(c)

= a'(tr(c)) = tr(a(c)) or a(c)c~x G K(G)0. But C is characteristic in G, hence

a(c)c~x G C n K(G)0. Thus a(c) = c or g' G tr(CA). Therefore 77jc induces

a homeomorphism tj: C/Ca -» G'/G'^, r\(cCA) = tt(c)G'A'. Hence C/C^ is

compact.

Let ZC^ = (A: G /C(G)0|a(A:) = A:,a G A) and define

uV: (K(G)0/KA) X (C/CA) -* G/GA,xp(kKA,cCA) = kcGA .

Here xp is well defined, for if kkx~x G KA, ccxx G CA, then (kc)(kxcx)~x

= (kkx-x)(ccx~x) GKACAGGA.

Let xpx: G -* G/GA be the continuous projection and xp2: K(G )0 X C

-» (Z< (G )o/^) X (C/Q) be the open projection. Then xpx = xp ° xp2 since G

= K(G )0 X C. Hence >// is continuous and G/GA is compact.

Case (iv). Z ^ {1}.

Since ZC(G)q is characteristic in G, so is Z. Let G' = G/Z and it: G -* G'

be the projection. Then as in Case (ii) A induces a family A' of automorphisms

of G' such that G'/G'^ admits a finite G'-invariant measure. As Z is compact,

therefore 7r(Zc"(G)0) = (K(G'))0. Hence by Lemma 4, we have center of

(K(G'))0 = w(Z). But ir(Z) = {1}, therefore it follows from Case (iii) that

G'/G'A' is compact.

LetHA = {g G G\a(g)g~x G Z,a G A}.ThenHA = tt~x(G'A.) is a closed

subgroup of G containing G^. As in Case (ii), we have G/HA compact. So for

G/GA to be compact, it remains to prove that HA/GA is compact. Now

9KG)|Z c 3t(z)0 = s*(z0) = {1}

where ^*(Z0) denotes the subgroup of inner automorphisms of Z induced by

elements of Z0. Therefore [Z,G] = {1} and analogous arguments as those in

Case (ii) show that HA/GA is compact. This completes the proof of the

theorem.
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