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BOUNDS ON POSITIVE INTEGRAL SOLUTIONS

OF LINEAR DIOPHANTINE EQUATIONS

I. BOROSH AND L. B. TREYBIG

Abstract. Assuming the existence of a solution, we find bounds for small

solutions x of the finite matrix equation Ax = B, where each entry of A, B

is an integer, and x is a nontrivial column vector with nonnegative integer

entries.

0. Introduction. In [1], [5] and [6] there arise in a topological setting, systems

of linear equations with integer coefficients. The problem is to find a bound

K depending on the coefficients only, such that if the given system has a

nontrivial solution in nonnegative integers, then it has such a solution with all

entries bounded by K. In [6] L. B. Treybig gives such a bound K using an

inductive definition, and proves that a new solution can be found bounded by

K and with the additional property that each entry is bounded by the

corresponding entry of the given solution. The purpose of this paper is to find

some easily stated bounds which are much smaller than those given by

Treybig [6] but which do not satisfy necessarily the additional property.

Notation. Throughout this paper A will denote an m X n matrix, B an

m x 1 matrix, both with integral entries. We will consider the system of

equations

(1) Ax = B

where x is a column whose entries are x,, . . . , xn. By (A\B) we denote the

augmented matrix of the system (1). Let r denote the rank of A, Mx the

maximum of the absolute values of all the minors of A of order r, M2 the

maximum of the absolute values of all minors of order r of (A\B), and M the

maximum of the absolute values of all the minors of {A\B). All our bounds

will be stated in terms of m, «, Mx, M2, M, and therefore we may assume

from now on without loss of generality that r = m < «. [x] will denote, as

usual, the largest integer not exceeding x.

Results. §1 is devoted to the case m = 1. We prove that the bound in this

case is the maximum of the absolute value of the coefficients. It is easy to see

that this bound is sharp.

§2 considers the case r = n — 1 and we find the bound M2{1 + l/Mx).

The homogeneous case, 5 = 0, is discussed in §3 and the bound M is

obtained.
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§4 deals with the general case. First, we prove that if the homogeneous

system Ax = 0 has no nontrivial solution in nonnegative integers xs, then

every nonnegative solution of (1) in integers satisfies max xt < M2. We then

find a bound of the order of A/2 valid in all cases.

The result leads us to conjecture that if (1) has a solution in nonnegative

integers, then it has such a solution bounded by M2. However, we could not

prove this conjecture except for the particular cases already mentioned, nor

could we provide an example to disprove it.

1. The case m = 1.

Theorem 1. Let ax, . . . , an be integers not all 0, and b an integer. Suppose

the equation

(2) axxx + a2x2 + ■ ■ ■  + anxn = b

has a nontrivial solution in nonnegative integers x,,..., xn. Then (2) has such a

solution yx, . . . ,yn and, in addition,

(3) yt <max(\ax\, . . .,\an\,\b\),       i = 1,. . ., n.

Proof. We may assume without loss of generality that not all the at have

the same sign, otherwise it is clear that any solution of (2) also satisfies (3).

Assume without loss of generality ax > 0, a2 < 0, and b > 0. If b = 0, we

have the obvious solution xx = — a2, x2 = ax, x3 = • • • = xn = 0. We may

assume, therefore, b > 0.

The proof proceeds by induction on n, and the inductive step is adapted

from the method described in [4] for the solution of linear diophantine

equations. The case n — 1 is obvious, but we will also need the case n = 2.

Consider the equation

(4) axxx + a2x2 = b.

Let xx, x2 be a nonnegative solution of (4) and let A = [x2/ax]. Since

axxx + a2x2 = b > 0, we have —xx/a2 — x2/ax > 0 therefore, A = [x2/a,]

<[xx/-a2].

Define y, = x, + ka2, y2 = x2 — kax. Then (yx,y2) is a nonnegative solu-

tion of (4). We see that y2 is the remainder of the division of x2 by ax, and

therefore y2 < ax.

x2-y2 b - a2y2      ma\(\b\,\a2\)(l + y2)
y, = x, + ka0 = x, H-a-, = - <- .

1 ' ax        ■*■ ax ax

Since 1 + y2 < ax and ax > 1, we gety, < max(|£|,|a2|).

Assume now that Theorem 1 holds for equations with less than n un-

knowns. As above, in equation (2), we assume that ax >0, a2 < 0. Let g =

g.c.d.(ax,a2) and xx, . . . , xn be a nonnegative solution of (2) where no x- = 0.

Let m = \axxx + a2x2\/g. Then u, x3, . . . , xn is a nonnegative solution of

(5) egu + a3x3 + • • •  + anxn = b,

where e = + 1 or e = — 1, according as axxx + a2x2 is positive or not. By the

induction hypothesis, (5) has, therefore, an integral nonnegative solution u',

y3, . . . ,yn such that
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max(u',y3, . . . ,yn) < max(g, \a3\, . . ., \a„\, \b\) < max(|a,|, . .., \a„\, \b\).

The equation

(6) (Vc?)*l + {a2/g)X2 = eu'

has an integral solution since g.c.d.(a,/g, a2/g) = 1, and since axa2 < 0, the

homogeneous equation (ax/g)xx + {a2/g)x2 = 0 has a positive integral solu-

tion. Therefore (6) has an integral positive solution and, by the case pre-

viously considered, it has a solution y,,y2 such thaty, > 0, y2 > 0, and

max(y!,y2) < max(|a,|/g, |a2|/g, u') < max(|a,|, . . . , |a„|,|ft|).

2. The case r = n - 1.

Theorem 2. If r = n — 1 and the system (1) has a nontrivial solution in

nonnegative integers xt, then the system (1) has such a solution {yx, . . . ,yn)

satisfying the additional condition

maxy,. < M2(l + 1/A/,) < 2M2.

Proof. Let A' be an m X m submatrix of A whose minor has the maximal

absolute value. Since we assume r = m, we have a = det A' =£ 0, and we may

assume without loss of generality that a > 0, so that a = Mx. We may also

rename the variables in such a way that A' sits in the left corner of A.

Multiplying the two sides of (1) by adj A' we get

(7) a :   +   : xm+1 =   : ,

x"\       {b„\ IV

where the ft, are minors of A, and the c,. are minors of {A\B) for i

= I,. .., m. Denote by x,, . . . , xm,xm+1 a positive solution of (7) and define

(8) A = min([xm+1/a], [x,/|ft,.|]};

the minimum is taken over all / = 1,. . ., m such that ft, < 0.

We may assume that not all c, are 0, since otherwise the existence of a

positive solution implies ft,. < 0 for i = 1, . . . , m, and we get the solution

xm+x = a, Xj = -ft,., / = 1, . . . , m. Defineym+x = xm+1 - aA,y,. = x, + btk,

i = I, . . ., m. It is clear thaty,, . . . ,ym+1 is a nonnegative solution of (7). It

remains to estimatey,, . . . ,ym+x.

If A = [xm + x/a], thenym+1 is the remainder of the division of xm+x by a

and, therefore, ym + x < a < M2.

If A = [V|ft/|], 1 < 7 < w, ft,. < 0, then

ym+x = xm+x - a[xj/\bj\] = xm+x - a(Xj - yj)/\ty

andy, <|ft,|; therefore

ym+i = {-xm+\bj ~ axj + ayj)/\bj\- (~Cj+ ayj)f\b\;

ym + x <(max(|c,.|,a)(l +y7))/|ft,|< max(|cy|,a) < M2.

Let i be such that 1 < ; < w. If ft, > 0, then c, > 0 and ayt < c,, y, < c,

< M2. If ft, < 0 and A = [x,/|ft,|], theny, is the remainder of the division of x,
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by \bj\ and, therefore, y, < bt < M2. If ft, < 0, and

A =[xm+x/a] = (xm + x - ym+x)/a,

then

y, = Xj + bjk = (c,- - bjym+x)/a < sup(|ft,|, |c,|) < M2.

If ft,. < 0 and A = [^/|ft,|] = (*, - y,-)/|*/| and  I < j < m, j =£ i, then ft,.

<0,y,<|6y|.

abiixj ~ yj)       bAci ~ bjXm+x) - bj(cj - bjXm+x) + abjyj
ayt = axj- =- ,

bjCj - bjCj + a^yj       |(3,|max(a,|c/.|)(l + yj) + \bjC,\
v = - <-

abj aH

< max(<3,|c,.|) +\Cj\/a < M2(l + 1/Af,).

3. The homogeneous case.

Lemma 1. If Ax = 0 has a nontrivial nonnegative solution and n — r > 2,

then there exists a submatrix A' of A of order mx(n — 1), such that A'x = 0

has a nontrivial nonnegative solution.

Proof. Let x be a nontrivial nonnegative solution of Ax = 0. If x, = 0 for

some /, then A' is obtained by deleting the column i from A. Assume

therefore that xt > 0, i = 1, . . . , n. Since n > r + 2, there exists a solution y

of Ax = 0 such that x,y are linearly independent. Let

A =     max    (-yj/xj) = -y,/x,;
i=\, . . . , n

then for each i,

^*i + yt > ~(ytlxi)xt + y, > 0   and   Ax, + y, = 0.

A' is obtained by deleting column / from A.

Theorem 3. If Ax = 0 has a nontrivial nonnegative solution x in integers xt,

then it has such a solution y, with y, < M.

Proof. By using Lemma 1 we see that we can choose one of the variables to

be 0 and get a smaller system A'x = 0 which satisfies the hypothesis. Using

Lemma 1 repeatedly we find an m X n' matrix A' of rank r' such that

ri = r' + 1 and which by Cramer's rule has a positive integral solution given

by minors of A'.

4. The general case.

Theorem 4. If Ax = 0 has no nontrivial nonnegative solution, then every

nonnegative integral solution y of (I) satisfies yt < M2for i = I, . . . , n.

Proof. Applying Gordan's theorem [3, p. 31] to A we know that there

exists a vector z = (z,, . . . , zm) such that all the n entries of zA are positive.

Let C denote the set of all z such that all the entries of zA are nonnegative. C

is a polyhedral convex cone [2] in the w-dimensional euclidian space, and

each edge u of C satisfies A Tu > 0 and
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(8) A'Tu = 0

for some m X (m — I) submatrix A' of A of rank {m — I), where T denotes

the transpose. (8) has a nontrivial integral solution whose entries are the

minors of order m — 1 of A'. C is w-dimensional and therefore its edges are

not all contained in any hyperplane; therefore, for any i, 1 < i < m, there

exists an edge u = (t/„ . . . , um) whose entries are minors of order m — 1 of

some submatrix A' or A of order m X m — 1 and such that

(9) aXiux + ■ ■ •  + amium * 0.

Let x be any nonnegative integral solution of (1); then uAx = ub. Let

uA = {Ax, . . . , An); then A- > 0 for u = 1, . . . , m since u is an edge of C,

and Aj > 0, by (9). Ax, . . . ,A„ and ub are minors of {A\B) by the Laplace

expansion theorem. They are therefore integers, and

AjXj < M2,       x, < M2.

Theorem   5.   // (1)  has  a  nontrivial  nonnegative  integral solution  x

= {xx, . . . , xn), and S"=1x, is minimal over all such solutions, then

(i) x, < M for at least some i,

(ii) Xj < Mm{l + (« - l)M)for 1 < j < «,

(iii) if Q > I and w is the number of x, jhc« //ia? x, > QM, then w <

m(l + nM)/{Q + mM).

Proof. We may assume n > m = rank A, since otherwise M is trivially a

bound. Let x be the minimal solution described in the statement of the

theorem and assume that not all the x, are bounded by M. Rename the

variables in such a way that x,, . . . , xu are all the , which are bigger than M,

hence v > 1.

Case I. There is a c X c submatrix of X = (a,y) (1 < i < m, 1 < _/ < o)

which is nonsingular. Let Z) be the nonzero determinant of this matrix. Then

xp = K,0+r*o+i + • • • + <*;„*„ + bp)/D

for I < p < v, where ±a^,, ±bp,D are minors of (/4|5). Thus

xp < (« - u)Ai*2 + Af < (« - 1)A/2 + A/

for 1 < p < v and x^ < A/ for v + 1 < p < n.

Case II. There is no v X v submatrix of X which is nonsingular. We may

assume without loss of generality that the first q rows of X form a basis for

the row space of X, and we may assume further that the matrix Y = (a,)

(1 < i,j < a) is nonsingular. Let £> = det Y ^ 0. Solving for x,,..., x we
get

(10) x,. = (alq+xxq+x + ■ ■ ■ + a'ivxv+ ■ ■ ■ + a'inxn + b/)/D

where ±a'ip ±ft,, D are minors of {A\B) and 1 < / < a. Now consider some

fixed p where q + 1 < p < u. Recall that xp> M and x, < A/ for c + I < i

< «. If S^a,^, > - D, consider the solutiony of (1) defined by

Xj if a + 1 < j < « andy ^ p,

y, = j •*,, - £    ify = p,

Xj - ajp     ifl<j<q.
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Then 2;_,y,- = 2;=Ixy - D - *L\a'jp < 2".,^,  a contradiction.  If ^qj=xaJp

< — D, consider the solution y of (1) defined by

Xj for q + 1 < j < n,    j =£ p,

yy = \xp + D   forJ = p<

Xj + a'jp     for 1 < j < q.

As above, we get 2"_.y, < 2"=1xy, a contradiction. Therefore ^qi=xa'ip = - D

for q < p < v. We add now all the x„ 1 < /' < q, defined by (10) to obtain:

1 ! v n        I    q \ q \

di)       2*.-= \-d 2 Xj+  2    2^U, + 2^, /a
/=1 { i = q+\ ,_c+l\y-]       / ,= 1       J

(12) 2*,< 2    2«;,*,+ 2 |*,|,
7=1 / = t)+l     y= 1 /=1

V

(13) 2*,< ?(« - v)M2 + qM.
/=i

Thus x, < m(n — \)M2 + mM for 1 < i < v, and x, < M for u + 1 < /

< n. If v = n, then (13) implies that nM < wAf, so some x, < M. Note also

that (12) holds also for Case I. If Q > 1 and w denotes the number of

Xj > QM, then by (13):

wQM < q(n - v)M2 + qM,        wQM < m(n - w)M2 + qM,

or

w < m(l + nM)/ (Q + mM).
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