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Abstract. A general comparison theorem is extracted from the proof of a

recent comparison theorem of Leighton and Oo Kian Ke. The result is

applied to a comparison theorem for focal points.

The results of this note are inspired by a recent theorem of Leighton and

Oo Kian Ke [2]. The method of these authors can be used to prove a

comparison theorem for general homogeneous boundary conditions.

Theorem. Let

u"+px(t)u = 0,       y"+p2(t)y = 0,

where the pt{t) are positive and continuous. If

(1) u{t) > 0,y{t) > 0 in t0 < t < t„

(2) w(t0) = y(r0), «'(T0)=y'(T0),

(3) cos Bu{rx) - sin Bu'{jx) = cos y8y(r,) - sinBy'{Tx) = 0,

(4) there exists o E (t0, t,) so that px{t) > p2(0 for t < o, px{t) < p2(t) for

t > o, then u{rx) < y{rx) and |w'(Ti)| <|y'(Ti)|- 7%e inequalities are strict

unless    cos B sin B = 0 in which cases the nontrivial inequalities are still strict.

The proof follows [2] closely. Since

,.     d'(t)       p,(t0)
hm ——— = ———  > 1
ur„ y"(t)      p2(t0)

and u"{t) < 0 for t E [t0, t,] it follows that u'{t) < y'{t) and u{t) < y{t) in

some interval t0 < t < t0 + e. We prove that u{t) < y{t) in (t0, t,). For

W(t) = u(t)y'(t) - u'(t)y(t)

we have W{t0) = W{tx) = 0. Since

W'(t)=[px(t)-p2{t)]u(t)y(t)

changes sign only once in [t0, t,], by Rolle's theorem W{t) > 0 in (t0, t,). If

u{t) > y{t) somewhere in (t0, t,), by continuity there exists a first value tQ

where w(/0) = y{t0) and t0 > t0. At r0,

W('o)=[/('o)-"'('o)]"^o)>0   and   /Co) > «'('o)-
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But this is impossible since the graph of y is above the graph of u in (t0,

t0 + e) and at the first intersection the graph of y cannot have greater slope

than that of u. Our assertion is proved and it follows that u(rx) < y(r,).

For o < t < t, we have

^"(t)/y"(t)= Px(t)u(t)/p2(t)y(t) < 1

andy"(0 < ""(0- By integration,

(1) u'(rx) - y'(rx) > u'(t) - y'(t)    for    tG(o,rx).

Case 1. If cos B = 0, u'(tx) = y'(T,) = 0 and u'(t) < y'(t) for t G (o, t,).

From (1) we have

u(tx) = u(t) + fT'u'(s) ds<y(t) + fT,y'(s) ds= y(rx)

for t close to t,. This inequality is strict as asserted in the theorem.

Case 2. If sin R = 0, u(rx) = y(T,) = 0 and, from (1),

u\rx)-y'(rx)>(y(t)-u(t))/(rx-t)>0.

Since the derivatives are negative, |w'(t,)| <|>;'(Ti)|- This is a result of [2].

Case 3. If cos B sin R ^ 0, assume that u(tx) = y(rx). As in Case 2 it

follows that u'(tx) > y'(7"i). Since, however, u'(rx) = w(T,)cot R and y'(T,)

= y(r,)cot R, we must have u'(rx) = y'(r|). The contradiction shows that

k(t,) *= y(r,) and u'(tx) =t y'(rx).

The first focal point f(t0) of an equation x" + p(t)x = 0 is the first zero

> t0 of the derivative of a nontrivial integral of the equation which itself

vanishes at t0. Similarly, the second focal point g(t0) is defined as the first

zero > t0 of an integral of the equation whose derivative vanishes at t0. The

first conjugate point c(t0) = g[f(t0)] is the first zero > t0 of a nontrivial

integral of the equation that vanishes at t0.

Proposition. If the hypotheses of the theorem hold for u(t0) = y(r0) = 0,

U'(T\) = y'(r\) = 0, i.e., for the first focal points fu and f of the equations we

havefu(r0) = fy(r0) = t, then

£(to)>J$.(t0)

or

L (t0 ~ «) < fy (r0 - e),       /„ (t0 + e) > fy (t0 + e)

for sufficiently small e.

Proof. Since [1, p. 113, (7)],

/„'('<>) = {p[fu(to)]Y\u'(t0)/u[fu(t0)]}\

we have by the theorem

/J (Tp)    =    />2(T,)   I"   y(T,)   j2

J^(ro) /,l(Tl)   [   "(Tl)   J

The theorem of Leighton and Oo Kian Ke [2] is the corresponding result for

c(t). No similar result holds for g(t) as can be seen from [1, p. 113, (8)]. The

derivation formulae have also been first obtained by Leighton.
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