A COMPARISON THEOREM¹

H. GUGGENHEIMER

DEDICATED TO EMIL SCHUBARTH ON THE OCCASION OF HIS DOCTORAL JUBILEE

ABSTRACT. A general comparison theorem is extracted from the proof of a recent comparison theorem of Leighton and Oo Kian Ke. The result is applied to a comparison theorem for focal points.

The results of this note are inspired by a recent theorem of Leighton and Oo Kian Ke [2]. The method of these authors can be used to prove a comparison theorem for general homogeneous boundary conditions.

THEOREM. Let

$$u'' + p_1(t)u = 0, y'' + p_2(t)y = 0,$$

where the $p_i(t)$ are positive and continuous. If

- (1) $u(t) \ge 0$, $y(t) \ge 0$ in $\tau_0 \le t \le \tau_1$,
- (2) $u(\tau_0) = y(\tau_0), u'(\tau_0) = y'(\tau_0),$
- (3) $\cos \beta u(\tau_1) \sin \beta u'(\tau_1) = \cos \beta y(\tau_1) \sin \beta y'(\tau_1) = 0$,
- (4) there exists $\sigma \in (\tau_0, \tau_1)$ so that $p_1(t) > p_2(t)$ for $t < \sigma$, $p_1(t) < p_2(t)$ for $t > \sigma$, then $u(\tau_1) \le y(\tau_1)$ and $|u'(\tau_1)| \le |y'(\tau_1)|$. The inequalities are strict unless $\cos \beta \sin \beta = 0$ in which cases the nontrivial inequalities are still strict.

The proof follows [2] closely. Since

$$\lim_{t \downarrow \tau_0} \frac{u''(t)}{y''(t)} = \frac{p_1(\tau_0)}{p_2(\tau_0)} > 1$$

and $u''(t) \le 0$ for $t \in [\tau_0, \tau_1]$ it follows that u'(t) < y'(t) and u(t) < y(t) in some interval $\tau_0 < t < \tau_0 + \varepsilon$. We prove that u(t) < y(t) in (τ_0, τ_1) . For

$$W(t) = u(t)y'(t) - u'(t)y(t)$$

we have $W(\tau_0) = W(\tau_1) = 0$. Since

$$W'(t) = [p_1(t) - p_2(t)]u(t)y(t)$$

changes sign only once in $[\tau_0, \tau_1]$, by Rolle's theorem W(t) > 0 in (τ_0, τ_1) . If $u(t) \ge y(t)$ somewhere in (τ_0, τ_1) , by continuity there exists a first value t_0 where $u(t_0) = y(t_0)$ and $t_0 > \tau_0$. At t_0 ,

$$W(t_0) = [y'(t_0) - u'(t_0)]u(t_0) > 0$$
 and $y'(t_0) > u'(t_0)$.

Received by the editors October 25, 1974 and, in revised form, February 10, 1975. AMS (MOS) subject classifications (1970). Primary 34C10.

¹ Research partially supported by NSF Grant GP-27960.

[©] American Mathematical Society 1976

But this is impossible since the graph of y is above the graph of u in $(\tau_0, \tau_0 + \varepsilon)$ and at the first intersection the graph of y cannot have greater slope than that of u. Our assertion is proved and it follows that $u(\tau_1) \leq y(\tau_1)$.

For $\sigma < t < \tau_1$ we have

$$u''(t)/y''(t) = p_1(t)u(t)/p_2(t)y(t) < 1$$

and y''(t) < u''(t). By integration,

(1)
$$u'(\tau_1) - y'(\tau_1) > u'(t) - y'(t)$$
 for $t \in (\sigma, \tau_1)$.

Case 1. If $\cos \beta = 0$, $u'(\tau_1) = y'(\tau_1) = 0$ and u'(t) < y'(t) for $t \in (\sigma, \tau_1)$. From (1) we have

$$u(\tau_1) = u(t) + \int_t^{\tau_1} u'(s) \, ds < y(t) + \int_t^{\tau_1} y'(s) \, ds = y(\tau_1)$$

for t close to τ_1 . This inequality is strict as asserted in the theorem.

Case 2. If $\sin \beta = 0$, $u(\tau_1) = y(\tau_1) = 0$ and, from (1),

$$u'(\tau_1) - y'(\tau_1) > (y(t) - u(t))/(\tau_1 - t) > 0.$$

Since the derivatives are negative, $|u'(\tau_1)| < |y'(\tau_1)|$. This is a result of [2].

Case 3. If $\cos \beta \sin \beta \neq 0$, assume that $u(\tau_1) = y(\tau_1)$. As in Case 2 it follows that $u'(\tau_1) > y'(\tau_1)$. Since, however, $u'(\tau_1) = u(\tau_1)\cot \beta$ and $y'(\tau_1) = y(\tau_1)\cot \beta$, we must have $u'(\tau_1) = y'(\tau_1)$. The contradiction shows that $u(\tau_1) \neq y(\tau_1)$ and $u'(\tau_1) \neq y'(\tau_1)$.

The first focal point $f(t_0)$ of an equation x'' + p(t)x = 0 is the first zero $> t_0$ of the derivative of a nontrivial integral of the equation which itself vanishes at t_0 . Similarly, the second focal point $g(t_0)$ is defined as the first zero $> t_0$ of an integral of the equation whose derivative vanishes at t_0 . The first conjugate point $c(t_0) = g[f(t_0)]$ is the first zero $> t_0$ of a nontrivial integral of the equation that vanishes at t_0 .

PROPOSITION. If the hypotheses of the theorem hold for $u(\tau_0) = y(\tau_0) = 0$, $u'(\tau_1) = y'(\tau_1) = 0$, i.e., for the first focal points f_u and f_y of the equations we have $f_u(\tau_0) = f_v(\tau_0) = \tau_1$ then

$$f_{u}'(\tau_{0}) > f_{v}'(\tau_{0})$$

or

$$f_u(\tau_0 - \varepsilon) < f_y(\tau_0 - \varepsilon), \qquad f_u(\tau_0 + \varepsilon) > f_y(\tau_0 + \varepsilon)$$

for sufficiently small ε .

Proof. Since [1, p. 113, (7)].

$$f_u'(t_0) = \{ p[f_u(t_0)] \}^{-1} \{ u'(t_0) / u[f_u(t_0)] \}^2,$$

we have by the theorem

$$\frac{f'_{u}(\tau_{0})}{f_{y}(\tau_{0})} = \frac{p_{2}(\tau_{1})}{p_{1}(\tau_{1})} \left[\frac{y(\tau_{1})}{u(\tau_{1})} \right]^{2} > 1.$$

The theorem of Leighton and Oo Kian Ke [2] is the corresponding result for c(t). No similar result holds for g(t) as can be seen from [1, p. 113, (8)]. The derivation formulae have also been first obtained by Leighton.

REFERENCES

1. O. Brouvka, Lineare Differentialtransformationen 2. Ordnung, Hochschulbücher für Mathematik, Band 67, VEB Deutscher Verlag der Wissenschaften, Berlin, 1967. MR38 #4743. 2. W. Leighton and W. Oo Kian Ke, A comparison theorem, Proc. Amer. Math. Soc. 28(1971), 185-188. MR42 #8002.

Department of Mathematics, Polytechnic Institute of New York, Brooklyn, New York 11201