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A PERTURBATION THEOREM FOR

COMPLETE SETS OF COMPLEX
EXPONENTIALS

ROBERT M. YOUNG

Abstract. The purpose of this note is to show that the completeness of a

set of complex exponentials {e'x"'} in L2(—7r,w) is preserved whenever the \n

are subjected to a suitable "lifting".

There is an extensive literature on the completeness of sets of complex

exponentials {e'x"') (see, for example, [l]-[8], and the references therein). In

this note, we show that completeness is preserved in L?(—77,77) whenever the

\n are subjected to a suitable "lifting".

Theorem. Let {Xn} and {pn) be two sequences of points lying in a fixed

horizontal strip and suppose that Re Xn = Re p„. // {eiX"!) is complete in

L (—tt, tt), then so too is (e* **»'}.

Proof. By making a suitable translation, we may assume that X„pn ¥= 0.

Suppose that the set {e'^"') is not complete in L2(—tr,tt). Then there exists a

function/0 in L2(—tt,tt) not equivalent to zero such that

P Ut)e^'dt = 0       («= 1,2,...).
J — 77

Let us denote by H the Paley-Wiener space of entire functions F of

exponential type tt for which

11*11 = {/_! m*)i2rfx] < 00.

If we set

*o00 = f fo(t)ei2'dt,j—tt

then F0 belongs to H, is not identically zero, and F0(pn) = 0 for each pn. We

may suppose in addition that F0(0) = 1. This is clear if F0(0) ¥= 0, while if F0

has a zero of order m at the origin, then dividing F0 by a suitable multiple of

zm produces the desired function.

Let

Fn(z) = F0{z) f[ P^T*       (fl-1,2,...)-
k=x z - pk \k
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Then Fn G H, F„(0) = 1, and F„(Xk) = 0 (A = 1,2,... ,n). We are going to

show that the norms \\Fn\\ are uniformly bounded in n. By the Paley-Wiener

representation for functions in H, we have

F„ (z) = f f„ (t)eizl dt      with /„ in L2 (-m, m).
J —It

But then

r fn(ty»dt = z-^^r7 L^'dt,
J—n Z — p,n t\nJ—rr

and it was shown by Levinson [2, p. 10] that

m = xz[fn-dt) + i(K~ ^-'"■'{"jn-lixW^dx].

Since sup|A„ - /x„| < oo, obvious estimates yield

ll/jl </fkAIII/„-J,

where A is independent of n. Therefore,

iixii < A\\f0\\ n £* ,
k=\    ^k

and  it  remains  only  to  estimate  the  products  Y[k=x \\Lk/Xk\.  From  the

conditions on {A„} and (it„} it follows that

^ =l+{lmH)22-{lmXk)\<l+B/\Xk\2,
h (ReXk)2 + (lmXk)2 "  *' '

where B is independent of A. Therefore, for all n,

n ? <fi(. + -^y,2<fi(1+-^)'/2
fc=l   A*.        fc=] \       |AJ / fe-l V       \Xk\  '

< exp   y 2 vr-a  •
L2 *-i |A/cl J

Now, r^) is entire of exponential type, and hence of order no larger than 1.

Therefore, its exponent of convergence is also at most 1, and in particular, the

series 2 1/1/*,, I is convergent. It follows that the series 2 1/|A„| is also

convergent, and we conclude that sup||/JI < oo. Since the Fourier transform

is an isometry, the norms \\Fn\\ are uniformly bounded. But H is a functional

Hilbert space, and therefore a subsequence of {Fn} will converge weakly to a

function G in H for which G(X„) = 0 (n = 1,2,...) and G(0) = 1. Writing

G(z) = f g(t)eiztdt,
J—IT

with g in L2(—7T,7r), we conclude that the sequence {e'x"') is not complete in
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L (—tt, tt), contrary to assumption. The contradiction establishes the theorem.

Added in proof. Ray Redheffer has informed me that this result, with a

different proof, appeared in J. Eisner's doctoral dissertation (Georg-August

Univ., Gottingen, 1969).
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