A PERTURBATION THEOREM FOR COMPLETE SETS OF COMPLEX EXPONENTIALS

ROBERT M. YOUNG

ABSTRACT. The purpose of this note is to show that the completeness of a set of complex exponentials $\{e^{i\lambda_n t}\}$ in $L^2(-\pi,\pi)$ is preserved whenever the λ_n are subjected to a suitable "lifting".

There is an extensive literature on the completeness of sets of complex exponentials $\{e^{i\lambda_n t}\}$ (see, for example, [1]-[8], and the references therein). In this note, we show that completeness is preserved in $L^2(-\pi,\pi)$ whenever the λ_n are subjected to a suitable "lifting".

THEOREM. Let $\{\lambda_n\}$ and $\{\mu_n\}$ be two sequences of points lying in a fixed horizontal strip and suppose that $\operatorname{Re} \lambda_n = \operatorname{Re} \mu_n$. If $\{e^{i\lambda_n t}\}$ is complete in $L^2(-\pi,\pi)$, then so too is $\{e^{i\mu_n t}\}$.

PROOF. By making a suitable translation, we may assume that $\lambda_n \mu_n \neq 0$. Suppose that the set $\{e^{i\mu_n t}\}$ is not complete in $L^2(-\pi,\pi)$. Then there exists a function f_0 in $L^2(-\pi,\pi)$ not equivalent to zero such that

$$\int_{-\pi}^{\pi} f_0(t)e^{i\mu_n t} dt = 0 \qquad (n = 1, 2, \dots).$$

Let us denote by H the Paley-Wiener space of entire functions F of exponential type π for which

$$||F|| = \left\{ \int_{-\infty}^{\infty} |F(x)|^2 dx \right\}^{1/2} < \infty.$$

If we set

$$F_0(z) = \int_{-\pi}^{\pi} f_0(t) e^{izt} dt,$$

then F_0 belongs to H, is not identically zero, and $F_0(\mu_n) = 0$ for each μ_n . We may suppose in addition that $F_0(0) = 1$. This is clear if $F_0(0) \neq 0$, while if F_0 has a zero of order m at the origin, then dividing F_0 by a suitable multiple of z^m produces the desired function.

Let

$$F_n(z) = F_0(z) \prod_{k=1}^n \frac{z - \lambda_k}{z - \mu_k} \frac{\mu_k}{\lambda_k}$$
 $(n = 1, 2, ...).$

Received by the editors August 6, 1975.

AMS (MOS) subject classifications (1970). Primary 42A64; Secondary 46E30.

Key words and phrases. Complex exponentials, Paley-Wiener space.

© American Mathematical Society 1976

Then $F_n \in H$, $F_n(0) = 1$, and $F_n(\lambda_k) = 0$ (k = 1, 2, ..., n). We are going to show that the norms $||F_n||$ are uniformly bounded in n. By the Paley-Wiener representation for functions in H, we have

$$F_n(z) = \int_{-\pi}^{\pi} f_n(t)e^{izt} dt \quad \text{with } f_n \text{ in } L^2(-\pi, \pi).$$

But then

$$\int_{-\pi}^{\pi} f_n(t)e^{izt} dt = \frac{z-\lambda_n}{z-\mu_n} \frac{\mu_n}{\lambda_n} \int_{-\pi}^{\pi} f_{n-1}(t)e^{izt} dt,$$

and it was shown by Levinson [2, p. 10] that

$$f_n(t) = \frac{\mu_n}{\lambda_n} \left[f_{n-1}(t) + i(\lambda_n - \mu_n) e^{-i\mu_n t} \int_{-\pi}^{\pi} f_{n-1}(x) e^{i\lambda_n x} dx \right].$$

Since $\sup |\lambda_n - \mu_n| < \infty$, obvious estimates yield

$$||f_n|| \leq A|\mu_n/\lambda_n|||f_{n-1}||,$$

where A is independent of n. Therefore,

$$||f_n|| \leqslant A||f_0|| \prod_{k=1}^n \left| \frac{\mu_k}{\lambda_k} \right|,$$

and it remains only to estimate the products $\prod_{k=1}^{n} |\mu_k/\lambda_k|$. From the conditions on $\{\lambda_n\}$ and $\{\mu_n\}$ it follows that

$$\left|\frac{\mu_k}{\lambda_k}\right|^2 = 1 + \frac{(\operatorname{Im} \mu_k)^2 - (\operatorname{Im} \lambda_k)^2}{(\operatorname{Re} \lambda_k)^2 + (\operatorname{Im} \lambda_k)^2} \leqslant 1 + B/|\lambda_k|^2,$$

where B is independent of k. Therefore, for all n,

$$\prod_{k=1}^{n} \left| \frac{\mu_k}{\lambda_k} \right| \leqslant \prod_{k=1}^{n} \left(1 + \frac{B}{|\lambda_k|^2} \right)^{1/2} \leqslant \prod_{k=1}^{\infty} \left(1 + \frac{B}{|\lambda_k|^2} \right)^{1/2}
\leqslant \exp \left[\frac{B}{2} \sum_{k=1}^{\infty} \frac{1}{|\lambda_k|^2} \right].$$

Now, F_0 is entire of exponential type, and hence of order no larger than 1. Therefore, its exponent of convergence is also at most 1, and in particular, the series $\sum 1/|\mu_n|^2$ is convergent. It follows that the series $\sum 1/|\lambda_n|^2$ is also convergent, and we conclude that $\sup ||f_n|| < \infty$. Since the Fourier transform is an isometry, the norms $||F_n||$ are uniformly bounded. But H is a functional Hilbert space, and therefore a subsequence of $\{F_n\}$ will converge weakly to a function G in H for which $G(\lambda_n) = 0$ $(n = 1, 2, \ldots)$ and G(0) = 1. Writing

$$G(z) = \int_{-\pi}^{\pi} g(t)e^{izt} dt,$$

with g in $L^2(-\pi,\pi)$, we conclude that the sequence $\{e^{i\lambda_n t}\}$ is not complete in

 $L^2(-\pi,\pi)$, contrary to assumption. The contradiction establishes the theorem. ADDED IN PROOF. Ray Redheffer has informed me that this result, with a different proof, appeared in J. Elsner's doctoral dissertation (Georg-August Univ., Göttingen, 1969).

REFERENCES

- 1. A. Beurling and P. Malliavin, On the closure of characters and the zeros of entire functions, Acta Math. 118 (1967), 79-93.
- 2. N. Levinson, Gap and density theorems, Amer. Math. Soc. Colloq. Publ., vol. 26, Amer. Math. Soc., Providence, R.I., 1940. MR 2, 180.
- 3. W. Luxemburg, Closure properties of sequences of exponentials, Topics in Analysis, Lecture Notes in Math., vol. 419, Springer-Verlag, New York, 1974, pp. 268–283.
- 4. R. Paley and N. Wiener, Fourier transforms in the complex domain, Amer. Math. Soc. Colloq. Publ., vol. 19, Amer. Math. Soc., Providence, R.I., 1934.
- 5. R. M. Redheffer, Elementary remarks on completeness, Duke Math. J. 35 (1968), 103-116. MR 37 #687.
- 6. —, Two consequences of the Beurling-Malliavin theory, Proc. Amer. Math. Soc. 36 (1972), 116-122. MR 48 #801.
- 7. L. Schwartz, Études des sommes d'exponentielles, 2ième éd., Publ. Inst. Math. Univ. Strasbourg, V, Actualités Sci. Indust., no. 959, Hermann, Paris, 1959. MR 21 #5116.
- **8.** R. Young, On perturbing bases of complex exponentials in $L^2(-\pi,\pi)$, Proc. Amer. Math. Soc. **53** (1975), 137–140.

DEPARTMENT OF MATHEMATICS, OBERLIN COLLEGE, OBERLIN, OHIO 44074