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Abstract. Let G be a finite group of order n and let A be a (real or

complex) Banach algebra. Rudin and Schneider [3] ask whether a mapping

f-.G^A satisfying \\f(x)\\ = 1 and/(x) = (\/n)S.yeJ(xy-')f(y) is nec-
essarily a homomorphism (Question 1, p. 602). They give an affirmative

answer if A is either commutative and semisimple or strictly convex.

Here, we prove this result for general Banach algebras, and at the same

time prove the natural generalization to compact groups. This allows us to

characterize norm one idempotents in generalized group algebras.

Suppose that G is a compact group with identity e and that A is a normed

space. A representation of G on X is a homomorphism T: G —> B{X). T is an

isometric representation if in addition each Tx is an isometry on A'; in this case

Te = / and each Tx is invertible. T is semi-isometric if || Tx\\ < 1 for x E G; in

this case Te is a projection of norm one and Tx = SxTe where S is an

isometric representation of G on Te{X).

We equip G with its left-invariant Haar measure X, normalized so that

X{G) = 1; we shall abbreviate dX{x) to dx. If X is any Banach space (or

Banach algebra) then a map <b: G -> X is Bochner measurable if it is the

almost everywhere limit of a sequence of simple functions, and Bochner

integrable if in addition /||<f>(.x)|| dx < oo. An operator valued function T:

Cm B{X) is strongly measurable if for each £ E X, the map x —> Tx£ is

Bochner measurable (see Hille-Phillips [2, pp. 72-74]). If for each £ G X, Tx£

is Bochner integrable and T£ = j GTX£ dx, then we shall write T = JGTX dx.

Lemma I. If x —* Tx is a strongly measurable mapping from G into B{X),

then so is the map yi—> T -\T.

We omit the proof of Lemma 1, which follows by approximation by simple

functions.

Lemma 2. //</>: G —» X is Bochner integrable then

lirri\{ ||<J>(wjc - <b{u))\\ du= 0.

Proof. See [2, Theorem 3.8.3] for the case G = R"; the same proof applies

here. The lemma is proved first for simple functions and follows in general by

approximation. Again we omit the details.
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Lemma 3. Suppose x -» Tx is a strongly measurable mapping from G into

B(X) such that supxeC|| 7"x|| = M < oo. Suppose for x G G,

Tx   =   fTxy-'Tydy-
JG

Then xt-^Tx is strongly continuous (i.e. for £ G X, x -+ Tx£ is continuous).

Proof. For £ G X,

Tx£=(Txy-,Ty£dy,
JG

Txui = JTxuy-iTyi dy = fjxy->Tyu£ dy,

by the invariance of Haar measure. Hence

\\Tx£-Txu£\\<f\\Txy-,(Ty£-Tyu£)\\dy
G

< M I || T £ - 7L||| dy^> 0   as u —> e by Lemma 2.

Lemma 4. If x\~* Tx is a strongly continuous map from G into B(X) then

(i) (x, y) -* TxTy is strongly continuous on G X G,

(ii) (x, y) —> T*T* is weak*-continuous on G X G.

Proof. Since G is compact, the continuous function jc —> || Tx£\\ is bounded

for every £ G X. Hence the Uniform Boundedness Theorem shows that

supxGG||rx|| = M < oo. Then

\\TxTy£-TxTyoq<\\TxTy£-TxTyoq + \\TxTJ-TxTyoq

<M\\TyZ-TJ\\ + \\(Tx-TXo)(TJ)\\
—> 0    as x —> x0 andy —»y0.

(ii) follows immediately by duality.
Remark. It is not true that xh T* is strongly continuous from G into

B(X*). For example let G = U%x{ — 1, + 1} and consider the representation

on /, given by (Tx£)„ = xn£n for £ = (£n) G lx and x = (x„) G G.

Lemma 5. Suppose T: G —> A (A") u strongly continuous and satisfies

(i) ||7;|| < 1,    x G G,       (ii) Tx = $Txy->Ty dy,   xGG.

Then, for £ G X, \\ Tx£\\ is independent of x and

\\TX£\\ = \\TyT2£\\    whenever x,y,z G G.

Proof.

rai<riivi7^ii#
(1) Jo

<[\\Ty£\\dy    foranyxGG.

Hence ||r,||| = /C||T,£|| dy for almost every x G G. Strong continuity of Tx

ensures that equality holds everywhere. Referring back to inequality (1) we

see that ||7;||| = HT^-iT^H for almost every y G G. Again by continuity



IDEMPOTENTS AND REPRESENTATIONS 363

equality holds everywhere and the result follows.

We are now able to prove the first version of our main result.

Theorem 1. Suppose T: G -> B{X) is strongly measurable and satisfies

(i) ||7;|| < l{xEG),

(ii) Te is an isometry, i.e. \\ Te£\\ = ||£|| for £ E X,

(in) Tx = fGTxy-,Ty dy {x E G).
Then T is a strongly continuous isometric representation of G.

Proof. T is strongly continuous by Lemma 3. Let U be the closed unit ball

of X* and <£ be any extreme point of U. Since Te is an isometry, it follows by

the Hahn-Banach Theorem that there exists yp E U such that T*\p = <b.

For £ E X,

<p{£) = ^{Te£) = U{TxTx->£) dx.
JG

For each measurable subset A of G with X{A) > 0 define <j>A E X* by

<bA{£) = X{A)-xfHTxTx->£)dx.
JA

Clearly <j>A E U and <f> = X{A)<bA + X{G — A)<bG_A. As <j> is an extreme point

of U, <J> = <bA = <pG_/4. Thus

({*{£)-UT*Tx-,£))dx=0
JA

for every measurable A c G and £ E X. Hence for £ E X, yp{TxTx-\£) = <J>(£)

almost everywhere, and by the strong continuity of the map xy-> TxTx-\ (see

Lemma 4), equality holds everywhere. Hence T*-\T*yp = <b for x E G. The

choice of yp shows that T*<b = {T*)2yp = <#>. As T* is weak*-continuous and,

by the Krein-Milman theorem, U is the weak*-closed convex cover of its

extreme points we have T* = I. Thus <b = yp and we have also proved that

T*-iT*^> = <j> for any extreme point <b, i.e. TXTX~, = / by the same argument

as above. Hence each Tx is an isometric isomorphism of X.

Again if <j> is any extreme point of U, so is T*<p and

(7»(£) = f <b{Txy-,Ty£) dy    {£EX).
JG

Arguing as before we conclude that

T*x = T;T%s,        x,yEG,

i.e. T is an isometric representation.

Theorem 2. Suppose T: G —> B{X) is strongly measurable and satisfies

(i)\\Tx\\ < l{xEG),

(ii) Tx = fTxy-\Ty dy {x E G).Then T is a semi-isometric representation of

G.

Proof. Again we have T strongly continuous by Lemma 2. Define a
seminorm | • | on X by

1*1-IW
and let A = ^"'(0). By Lemma 5, |F^| = \£\ for x E G. Hence there is an

induced representation on X/N satisfying the hypotheses of Theorem 1. By
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Theorem 1,

|Fe|-||=0,  £EX,

and

\TxTy£- Txy£\=0,   £EX,x,y EG.

Hence \\Te2£ - Te£\\ = 0, i.e. Te is a projection. By Lemma 5, \\Tx{Te£ - £)\\

= \\Te{Te£ - |)|| = \\T2£ - Te£\\ = 0 for x E G, i.e. TxTe = Tx. Also by
Lemma 5, for any w E G,

\\TwTxTy£ - r^l^(r^ - Txy£)\\ =\TxTy£ - Txy£\= 0.

Thus TwTxTy = 7^7^ for w, x, y E G.

Now suppose we have the equation

(2) TeTx= Tx    {xEG).

Then we have TxTy = TeTxTy = TeTxy = Txy, and the proof is complete.

Therefore it remains only to establish (2). Here the only difficulty is that

x —> T* need not be strongly continuous. (For, if it were, we could apply the

argument above tox-* 7*.) This is circumvented by the construction that

follows. We shall assume here that X is complete, for convenience.

Fix any £0 E X and let X0 be the smallest closed subspace of X such that

£0 E Xq and TX{X0) c X0, x E G. It is enough to consider the induced map

G^B(X0).

Let C0 = {(£Q) u {Tx£0: x E G) u {TxTy£0: x, y E G)). Then C0 is com-

pact and so is its closed absolutely convex hull C. Let Y be the linear span of

C equipped with the norm whose unit ball is C. Then Y is a Banach space,

since C is compact. Furthermore since Tw Tx Ty = Tw T^ for w, x, y E G we

have TW(C) E C. Thus Y is invariant for each Tx and so Y is dense in A0. Let

T denote the restriction of Tx to Y; then in the norm of Y, \\ Tx\\ < J. Let J:

Y —> X0 be the inclusion map. By construction J is compact and JTX = TXJ

{x E G). Now suppose TeTw ^ Tw. Since Te is a projection, TW{X0)

£ Te{X0). Hence there exists yp E X* such that 7*uV ̂  0 but T*yp = 0. Since

J is compact the map x —> J* T*yp is continuous. Choose u E G such that

c=|K*W|| = max||7*^||.

Since 7(C) is compact there exists 17 G C such that T*yp{Jri) = c. Then

1^(7^,7^)1 =\yp{Tux-JTxv)\ =\J*T*ux-,yp(fxn)\ < c.

However

[yP^-tTjT)) dx= yp(TuJrj) = C.

Hence yp(Tux-\TxJt\) = c by continuity. In particular putting x = «,

yp(TeTJfrj) = c, i.e. r*t//(7^/17) = c. However 7*^ = 0 and hence c = 0. Thus

7* 7*i// = 0; but Y is dense in X0 and hence T*yp = 0, which is a contradic-

tion to our initial assumption. This completes the proof.

Corollary. Suppose  &  is a bounded subsemigroup of B(X) and T:  G

-» B (X) is a strongly measurable mapping satisfying

(i)T(G)E &,
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(ii) Tx = \GTxy-xTy dy(xG G).

Then T is a representation of G.

Proof. Renorm X by |£| = &vpAeetu{n\\At\\.
We can now characterize idempotents of norm one in the generalized

group algebra of a locally compact group G. Let A be a Banach algebra and

let LX(G : A) denote the space of Bochner integrable functions/: G^>A.

LX(G : A) is a Banach algebra under the multiplication

/ * S(x) = f f(xy ~x)g(y) dy
JG

and norm

\\A\ = f\\f(mdx-
G

It is well known that if A = C, the norm one idempotents of

LX(G: C) = LX(G) are of the form X(H)~xp(x)xH(x) where H is a compact

open subgroup, p is a character on H and Xh is tne characteristic function

of H. (See [1, 2.1.4].) Since the elements of L(G: A) are equivalence classes,

if/is an idempotent in LX(G: A), then we can assume that the represen-

tative satisfies f(x) = }G f(xy ~ x)f(y) dy for all x G G. We make this as-

sumption in the following theorem.

Theorem 3. Let f e LX(G : A) and suppose \\f\\ = 1 andf*f = f. Then f is
continuous and there exists a compact open subgroup H of G such that

(i)f(x) = 0,xGH,
(ii) f(xy) = X(H)f(x)f(y),x,y G H,
(m)\\f(x)\\=(X(H))-x,xGH.

Proof.

\\f(x)\\<j\\f(xy-x)\\\\f(x)\\dy

and

1 =/Gl|/W|| ^=/c/Gl|/(^"1)||||/W|| dy dx

so that

ll/WII = f ||/(^'"1)||||/(^)|| dy   almost everywhere.
^ G

Hence if y(x) = /G||/Cxy-1)||||/(y)|| dy then y is a norm one idempotent in

LX(G). Hence there is a compact open subgroup H such that y(x)

= X(H)-xXh(x).

It follows that ||/(jc)|| = 0 if x £ H, and that ||/(x)|| < X(H)~X for all
x G G.

We may suppose A has an identity and then identify A as a subalgebra of

B(A). If we define for x G H,

Txa = X(H)f(x)a,

then || TJ < 1 and jHTxy-,Tydy = Tx. By Theorem 2, TxTy = Txy and the
result follows.

If G is compact we may also consider the algebra LP(G : A) (1 < p < oo)

with the norm
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M,-{/ll/(*)l'*}l/'

Using a similar approach to that of [4] we obtain

Theorem 4. /// G LP(G : A) satisfies \\f\\p = 1 and f * f = f then f(xy)
= f{x)f{y)forallx,yEG.
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