EXISTENCE OF SIDON SETS IN DISCRETE FC-GROUPS

LEONEDE DE MICHELE AND PAOLO M. SOARDI

ABSTRACT. In this paper we prove that every infinite subset of a discrete FC-group contains an infinite Sidon set.

1. **Introduction.** Let G be an infinite discrete amenable group and B(G) the Fourier-Stieltjes algebra of G (we refer to Eymard [2] for notations and properties). A subset $E \subseteq G$ is called a Sidon set if, for every bounded complex-valued function g on E, there is a function $f \in B(G)$ such that f(x) = g(x) whenever $x \in E$.

When G is abelian with dual group Γ , B(G) consists of those complex functions which are Fourier-Stieltjes transforms of measures in $M(\Gamma)$, so that the above definition coincides, for abelian groups, with the usual one. For further properties we refer to [1], [3] and [4] where Sidon sets in nonamenable groups are also discussed. It is well known that every infinite subset of an abelian group contains an infinite Sidon set: whether this is true for amenable noncommutative groups is still an open question. For certain groups, e.g. type I groups [8, Theorem 6] or solvable groups [5], the problem has an affirmative trivial answer; this is a consequence of the corresponding property for the commutative groups and of functorial properties of B(G) [2, 2.31 and 2.36].

In this paper we prove that every infinite subset of G contains an infinite Sidon set when G is an FC-group, i.e. a group with finite conjugacy classes. Our proof follows from an application, suggested to us by A. Figà-Talamanca, of a general result of H. P. Rosenthal [6] on the l^1 -subspaces of a Banach space. Notice that, unlike commutative groups, Riesz products techniques do not seem to work well in nonabelian groups; we refer to Cygan [1] for a study of Riesz products in FC-groups.

2. Existence of Sidon sets. Let $G_1, G_2, \ldots, G_i, \ldots$ be a sequence of finite groups and denote by $G^* = \prod_{i=1}^{\infty^*} G_i$ their weak direct product endowed with the discrete topology. For every element $y \in G^*$ we denote by $y^{(i)}$ the i coordinate, and by e_i the identity of G_i ; then $y^{(i)} \neq e_i$ only for finitely many i's. If y is not the identity of G^* , v(y) will denote the largest index v such that $y^{(v)} \neq e_v$. Finally, for every $y^{(i)}$, let $H(y^{(i)})$ denote the cyclic subgroup of G_i generated by $y^{(i)}$.

BASIC LEMMA. For every infinite sequence $(y_n) \subseteq G^*$ there is a positive definite function f such that $f(y_n)$ does not converge as $n \to \infty$.

Received by the editors May 5, 1975.

AMS (MOS) subject classifications (1970). Primary 22D99, 43A35; Secondary 42A44, 20F99.

Key words and phrases. Fourier-Stieltjes algebra, discrete groups, amenable groups, FC-groups, Sidon sets, equivalent to the usual l^1 -basis.

[©] American Mathematical Society 1976

PROOF. We may suppose $y_n \neq y_m$ if $n \neq m$. Let $||y_n^{(i)}||$ be the infinite matrix whose rows are the coordinates of the y_n 's. Let i_1 be the first column containing an element $y_n^{(i_1)} \neq e_{i_1}$. Since G_{i_1} is finite there is $a_1 \in G_{i_1}$ appearing infinitely many times in the i_1 th column. If $a_1 = e_{i_1}$, we let $n_1 = \overline{n}$; otherwise we let n_1 be the smallest n such that $a_1 = y_n^{(i_1)}$. Hence, for infinitely many rows, $y_n^{(i_1)} \in H(y_{n_1}^{(i_1)})$. We select these rows and form the infinite submatrix whose rows have been just chosen and whose column index starts from $\nu(y_{n_1})$. We choose as before i_2 and n_2 ; hence, for infinitely many n's, we have at same time $y_n^{(i_1)} \in H(y_{n_1}^{(i_1)})$ and $y_n^{(i_2)} \in H(y_{n_2}^{(i_2)})$. Carrying on this process we produce two infinite subsequences (i_k) and (n_k) with the following properties:

(1) $y_{n_k}^{(i_k)} \neq e_{i_k}$. (2) $i_k > v(y_{n_{k-1}}) \geqslant i_{k-1}$. (3) $y_{n_k}^{(i_k)} \in H(y_{n_k}^{(i_k)}) = H_{i_k}$ whenever $r \geqslant k$. Let $\gamma^{(i_1)}$ be an arbitrary character of H_{i_1} . Suppose that $\gamma^{(i_1)}, \ldots, \gamma^{(i_k)}$ have been chosen, $\gamma^{(i_s)} \in \hat{H}_{i_s}$, where \hat{H}_{i_s} is the dual group of H_{i_s} , and $s = 1, \ldots, k$. We define $\gamma^{(i_{k+1})} \in \hat{H}_{i_{k+1}}$ to be the identity if

$$\left| \prod_{s=1}^{k} \gamma^{(i_s)} (y_{n_k}^{(i_s)}) - \prod_{s=1}^{k} \gamma^{(i_s)} (y_{n_{k+1}}^{(i_s)}) \right| \geqslant \frac{1}{2}$$

(this product makes sense by (3)); otherwise, we choose, on account of (1), $\gamma^{(i_{k+1})}$ in such a way that $\pi \geqslant \arg(\gamma^{(i_{k+1})}(y_{n_{k+1}}^{(i_{k+1})})) > \pi/3$. Let $g^{(i_k)}$ be a positive definite function on G_{i_k} such that $g^{(i_k)}(x) = \gamma^{(i_k)}(x)$ for every $x \in H_{i_k}$. Let f_{i_k} be a positive-definite function on the whole of G^* such that $f_{i_k}(y) = g^{(i_k)}(y^{(i_k)})$ for every $y \in G^*$. Finally, let $f_i(y) = 1$ for $y \in G^*$, when $i \neq i_k$. Then, the infinite product

$$f(y) = \prod_{i=1}^{\infty} f_i(y), \quad y \in G^*,$$

is a well-defined positive-definite function on G^* such that, by (2),

$$f(y_{n_k}) = \prod_{s=1}^k \gamma^{(i_s)}(y_{n_k}^{(i_s)}).$$

By the above construction $f(y_{n_k})$ does not converge as $k \to \infty$.

THEOREM. Let G an infinite discrete FC-group. Then every infinite subset $E \subseteq G$ contains an infinite Sidon set.

PROOF. We may suppose, without loss of generality, E and G countable. Let $\mathfrak{T}(G)$ be the center of G and $\tilde{G} = G/\mathfrak{T}(G)$; then \tilde{G} is isomorphic to a subgroup of the weak direct product G^* of countably many finite groups (see e.g. [5, p. 124, Corollary]). Moreover, since G^* is discrete, the restriction of G^* to \tilde{G} induces an isometry of $B(G^*)$ onto $B(\tilde{G})$ [2, 2.31]. Denote by $\varphi: G \mapsto \tilde{G}$ the canonical projection. If $\varphi(E)$ is finite, then, up to a translation, $\mathfrak{T}(G)$ contains infinitely many elements of E and the theorem follows. If this is not the case, there are infinitely many distinct elements y_n in $\varphi(E)$. For every n choose $x_n \in E \cap \varphi^{-1}(y_n)$; if (y_n) contains an infinite Sidon set for $B(\tilde{G})$, (x_n) will contain an infinite Sidon set for B(G) (see [2, 2.26]). Let δ_{y_n} be the unit mass concentrated in y_n . By [1, Theorem 1] we have to prove that there is a subsequence of (δ_{y_n}) which is equivalent in $C^*(\tilde{G})$ (i.e. the completion of $l^1(\tilde{G})$ in the spectral norm) to the usual l^1 -basis (see [6, p. 2411] for a definition). By the basic lemma, $(\delta_{y_n} + \delta_{y_n^{-1}})$ (or $(\delta_{y_n} - \delta_{y_n^{-1}})$ does not contain weak Cauchy subsequences; observing that (δ_{y_n}) and $(\delta_{y_n} + \delta_{y_n^{-1}})$ (or $(\delta_{y_n} - \delta_{y_n^{-1}})$) are simultanously equivalent or not to the usual l^1 -basis, the theorem is a consequence of the following

LEMMA. Let (h_n) be a sequence of hermitian elements of a C^* -algebra A and suppose that (h_n) does not contain weak Cauchy subsequences. Then it contains a subsequence equivalent to the usual l^1 -basis.

PROOF. Let A_h be the real Banach space of all hermitian elements of A. Then, as it is easily seen, (h_n) does not contain weak Cauchy subsequences for the weak topology induced on A_h by the hermitian functionals on A. By applying Rosenthal's theorem [6, Main Theorem], we get a subsequence (h'_n) equivalent to the real l^1 -basis. Let $c_n = a_n + ib_n$, $n = 1, \ldots, N$, a_n and b_n real numbers and, say, $\sum_{n=1}^N |a_n| \geqslant \sum_{n=1}^N |b_n|$. Let p be a positive linear functional of norm 1 (see [7, 1.5.4]) such that $|p(\sum_{n=1}^N a_n h'_n)| \geqslant \frac{1}{2} ||\sum_{n=1}^N a_n h'_n||$. Then, if $\delta > 0$ is such that $||\sum_{n=1}^N a_n h'_n|| \geqslant \delta \sum_{n=1}^N |a_n|$ we get

$$\left\| \sum_{n=1}^{N} c_n h'_n \right\| \geqslant \left| p \left(\sum_{n=1}^{N} c_n h'_n \right) \right| \geqslant \left| p \left(\sum_{n=1}^{N} a_n h'_n \right) \right|$$

$$\geqslant \frac{1}{2} \left\| \sum_{n=1}^{N} a_n h'_n \right\| \geqslant \frac{\delta}{2} \sum_{n=1}^{N} |a_n| \geqslant \frac{\delta}{4} \sum_{n=1}^{N} |c_n|.$$

REMARK 1. It was announced in [6] that Rosenthal's theorem has been extended to the complex case by L. Dor. Therefore our lemma, that we reported for completeness, would be a particular case of Dor's result.

REMARK 2. It is worth mentioning that Rosenthal's theorem gives another proof of the fact that every infinite subset of a discrete abelian group contains an infinite Sidon subset. Indeed, given a sequence (x_n) in the abelian discrete group G, there is a character $\gamma \in \Gamma$ such that $\gamma(x_n)$ does not converge. If not, putting $\mu(\gamma) = \lim_{n \to \infty} \gamma(x_n)$, $\mu(\gamma)$ is a measurable multiplicative function on Γ and hence $\mu(\gamma) = \gamma(x)$ for some $x \in G$. On the other hand, for every $f \in L^1(\Gamma)$, $\hat{f}(x) = \lim_{n \to \infty} \hat{f}(x_n) = 0$, which is absurd.

REMARK 3. The main theorem can also be proved, however, without using Rosenthal's theorem: this fact has been pointed out by the referee and independently by the authors after the submission of the paper. The referee's sharper argument is reported below; indeed, it is proved that the set $\{y_{n_k}\}_{k=1}^{\infty}$, constructed in the proof of the basic lemma, is a Sidon set. To see this, let $\{\varepsilon_k\}_{k=1}^{\infty}$ be a sequence taking the values ± 1 . Redefining the characters $\gamma^{(i_k)}$ appropriately, we can arrange matters so that ε_k Re $\prod_{s=1}^k \gamma^{(i_s)}(y_{n_k}^{(i_s)}) \geq 0$ for all k, and so that this quantity is at least $\frac{1}{2}$ whenever $y_{n_k}^{(i_k)}$ has order greater than 2. Form the function f as in the basic lemma. Then ε_k Re $f(y_{n_k}) \geq 0$ for all k, and ε_k Re $f(y_{n_k}) \geq \frac{1}{2}$ if the order of $y_{n_k}^{(i_k)}$ is greater than 2. If none of the $y_{n_k}^{(i_k)}$ have order 2, then $|\text{Re } f(y_{n_k}) - \varepsilon_k| \leq \frac{1}{2}$ for all k, and $\{y_{n_k}\}_{k=1}^{\infty}$ is a Sidon set, by Cygan's Theorem 1. If there are indices k for which $y_{n_k}^{(i_k)}$ has order 2, then, working only with these indices, we can form a second, positive definite, product function g such that g takes the values 0 and \pm 1 only, and such that

 $g(y_{n_k}) = \varepsilon_k$ whenever $y_{n_k}^{(i_k)}$ has order 2. Let $u = g/5 + (4/5) \operatorname{Re} f$. Then $|u(y_{n_k}) - \varepsilon_k| \leq \frac{4}{5}$ for all k, and $\{y_{n_k}\}_{k=1}^{\infty}$ is a Sidon set.

REFERENCES

- 1. J. Cygan, Riesz products on noncommutative groups, Studia Math. 51 (1974), 115-123.
- 2. P. Eymard, L'algèbre de Fourier d'un groupe localement compact, Bull. Soc. Math. France 92 (1964), 181-236. MR 37 #4208.
- 3. A. Figà-Talamanca and M. Picardello, Multiplicateurs de A(G) qui ne sont pas dans B(G), C. R. Acad. Sci. Paris Sér. A-B 277 (1973), A117-A119. MR 48 #11922.
- 4. M. A. Picardello, Lacunary sets in discrete noncommutative groups, Boll. Un. Mat. Ital. (4) 8 (1973), 494-508. MR 49 #9543.
- 5. D. J. S. Robinson, *Finiteness conditions and generalized soluble groups*, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 62, Springer-Verlag, Berlin and New York, 1972. MR 48 #11314.
- 6. H. P. Rosenthal, A characterization of Banach spaces containing l¹, Proc. Nat. Acad. Sci. U.S.A. 71 (1974), 2411-2413.
- 7. S. Sakai, C*-algebras and W*-algebras, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 60, Springer-Verlag, Berlin and New York, 1971.
- 8. E. Thoma, Über unitäre Darstellung abzählbarer, diskreter Gruppen, Math. Ann. 153 (1964), 111-138. MR 28 #3332.

ISTITUTO MATEMATICO DELL'UNIVERSITÀ DI MILANO, 20133 MILANO, ITALY