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Abstract.    In this paper we prove that every infinite subset of a discrete

FC-group contains an infinite Sidon set.

1. Introduction. Let G be an infinite discrete amenable group and B{G) the

Fourier-Stieltjes algebra of G (we refer to Eymard [2] for notations and

properties). A subset E C G is called a Sidon set if, for every bounded

complex-valued function g on E, there is a function / E B{G) such that

f{x) = g{x) whenever x E E.

When G is abelian with dual group T, B{G) consists of those complex

functions which are Fourier-Stieltjes transforms of measures in M(r), so that

the above definition coincides, for abelian groups, with the usual one. For

further properties we refer to [1], [3] and [4] where Sidon sets in nonamenable

groups are also discussed. It is well known that every infinite subset of an

abelian group contains an infinite Sidon set: whether this is true for amenable

noncommutative groups is still an open question. For certain groups, e.g. type

I groups [8, Theorem 6] or solvable groups [5], the problem has an affirmative

trivial answer; this is a consequence of the corresponding property for the

commutative groups and of functorial properties of B{G) [2, 2.31 and 2.36].

In this paper we prove that every infinite subset of G contains an infinite

Sidon set when G is an FC-group, i.e. a group with finite conjugacy classes.

Our proof follows from an application, suggested to us by A. Figa-Talamanca,

of a general result of H. P. Rosenthal [6] on the /'-subspaces of a Banach

space. Notice that, unlike commutative groups, Riesz products techniques do

not seem to work well in nonabelian groups; we refer to Cygan [1] for a study

of Riesz products in FC-groups.

2. Existence of Sidon sets. Let Gx, G2, ..., Gt, ... be a sequence of finite

groups and denote by (7* = TJ^'i Gt their weak direct product endowed with

the discrete topology. For every element y G G* we denote by y^' the i

coordinate, and by et the identity of Gf, then y^') ^= e, only for finitely many

z"s. If y is not the identity of G*, v{y) will denote the largest index v such that

yr> ¥= ev. Finally, for every y-'>, let H(yX}') denote the cyclic subgroup of G,

generated by y-''.

Basic lemma. For every infinite sequence (y„) C G* there is a positive definite

function f such that f{y„) does not converge as n —> oo.
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Proof. We may suppose y„ ¥= ym if n ¥= m. Let \\yj,''\\ be the infinite matrix

whose rows are the coordinates of they„'s. Let ix be the first column containing

an element yjj'1' ¥= ev . Since G, is finite there is ax G G, appearing infinitely

many times in the /'ith column. If ax = e, , we let nx = n; otherwise we let nx

be the smallest n such that a, = y^'1'. Hence, for infinitely many rows,

yX1' G H(y^y). We select these rows and form the infinite submatrix whose

rows have been just chosen and whose column index starts from v(yn ). We

choose as before i2 and n2; hence, for infinitely many n's, we have at same time

y^> G H(y^') andy,;'2' G H(yji'2'). Carrying on this process we produce two

infinite subsequences (ik) and (nk) with the following properties:

(1)##<V
(2)ik> v(ynk_,) > 'k-i-
(3)y('k) G H(y('k)) = H whenever/- > k.

{' \ "k 'k j. \ j ■  \

Let y1'1' be an arbitrary character of H( . Suppose that y('1', ..., yv*; have

been chosen, y''" G Hj, where Hj is the dual group of Ht, and s = 1, ..., k.

We define y('*+l) G 8ik+i to be the identity if

ri yfc)(yi;s)) - n y{"Hyn';lx)\ > 2
s=\ k s=i *   '   I l

(this product makes sense by (3)); otherwise, we choose, on account of (1),

y('*+i) in such a way that tt > arg(y^+1'(y^++^)) > tt/3. Letg^'^ be a positive

definite function on Gik such that g^^x) = y*'*'(x) for every x G Hik. Let./)

be a positive-definite function on the whole of G* such that fj (y)

= g{ik\y{ik)) for every y G G*. Finally, let f(y) = 1 for y G G*, when

/' ¥= ik. Then, the infinite product

00

/(y)= UfM, y^G*,

is a well-defined positive-definite function on G* such that, by (2),

f(ynk) = fi y(i'\y&-
s=\

By the above construction f(y„k) does not converge as k -> oo.

Theorem. Let G an infinite discrete FC-group. Then every infinite subset

EGG contains an infinite Sidon set.

Proof. We may suppose, without loss of generality, E and G countable. Let

2(G) be the center of G and G = G/%(G); then G is isomorphic to a subgroup

of the weak direct product G* of countably many finite groups (see e.g. [5, p.

124, Corollary]). Moreover, since G* is discrete, the restriction of G* to G

induces an isometry of B(G*) onto B(G) [2, 2.31]. Denote by cp: G h> G the

canonical projection. If cp(E) is finite, then, up to a translation, 2(G) contains

infinitely many elements of E and the theorem follows. If this is not the case,

there are infinitely many distinct elements y„ in cp(E). For every n choose

x„ G E n y~x(yn); if (yn) contains an infinite Sidon set for B(G), (x„) will

contain an infinite Sidon set for B(G) (see [2, 2.26]). Let 8yn be the unit mass

concentrated in yn. By [1, Theorem 1 ] we have to prove that there is a

subsequence of (8yii) which is equivalent in C*(G) (i.e. the completion of
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/'(G) in the spectral norm) to the usual /'-basis (see [6, p. 2411] for a

definition). By the basic lemma, (Syn + 8y-x) (or (5 - 8y-\) does not contain

weak Cauchy subsequences; observing that {8yJ and (Syn + 8y-i) (or (8yii

— 5 -i)) are simultanously equivalent or not to the usual /'-basis, the theorem

is a consequence of the following

Lemma. Let (hn) be a sequence of hermitian elements of a C*-algebra A and

suppose that (h„) does not contain weak Cauchy subsequences. Then it contains a

subsequence equivalent to the usual I -basis.

Proof. Let Ah be the real Banach space of all hermitian elements of A.

Then, as it is easily seen, (hn) does not contain weak Cauchy subsequences for

the weak topology induced on Ah by the hermitian functionals on A. By

applying Rosenthal's theorem [6, Main Theorem], we get a subsequence (h'n)

equivalent to the real /'-basis. Let c„ = an + ibn, n = 1, ..., N, a„ and b„

real numbers and, say, 2,?=i W„\ > 2^=i \b„\. Let p be a positive linear

functional of norm 1 (see [7, 1.5.4]) such that |p(2^=i anK')\

> illSifli anh'J. Then, if 8 > Ois such that ||2„1, anh'„\\ > 8 2„=i \an\ we
get

N I     /   N \ I I     /   N \ I

2  cnh'n    > \p( 2  cnh'n)\ > \p( 2 a„h'n)\
n=\ I    \n=\ /I I    \n=l /I

111 N II      8   N 8   N
> j     2  a„h'n\\ > »  2   K\ > t 2   \c„\.

A II n=\ II *■ n=\ H n = l

Remark 1. It was announced in [6] that Rosenthal's theorem has been

extended to the complex case by L. Dor. Therefore our lemma, that we

reported for completeness, would be a particular case of Dor's result.

Remark 2. It is worth mentioning that Rosenthal's theorem gives another

proof of the fact that every infinite subset of a discrete abelian group contains

an infinite Sidon subset. Indeed, given a sequence (xn) in the abelian discrete

group G, there is a character y E T such that y(xn) does not converge. If not,

putting p(y) = limn^00y(x„), p(y) is a measurable multiplicative function on

T and hence p(y) = y(x) for some x E G. On the other hand, for every

/ E Lx(T),f{x) = lim^^fixj = 0, which is absurd.

Remark 3. The main theorem can also be proved, however, without using

Rosenthal's theorem: this fact has been pointed out by the referee and

independently by the authors after the submission of the paper. The referee's

sharper argument is reported below; indeed, it is proved that the set (y„ }£°=1,

constructed in the proof of the basic lemma, is a Sidon set. To see this, let

{e^}^, be a sequence taking the values ±1. Redefining the characters y^

appropriately, we can arrange matters so that e^Re 11*= j y^'Hy^) > 0 for

all k, and so that this quantity is at least \ whenever y%k> has order greater than

2. Form the function/as in the basic lemma. Then eA.Re/(y„t) > 0 for all k,

and ,ekRef{ynk) > \ if the order of yn'^ is greater than 2. If none of they^

have order 2, then |Re/(y„t) - ek\ < | for all k, and {y }^L, is a Sidon se\,

by Cygan's Theorem 1. If there are indices k for which y™> has order 2, then,

working only with these indices, we can form a second, positive definite,

product function g such that g takes the values 0 and ± 1 only, and such that
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g(y„k) = ek whenever y™>  has  order 2.  Let  u = g/5 + (4/5)Re/.  Then

\u(y„k) — ek\ < 5 for all k, and {y„}ka=x is a Sidon set.

References

1. J. Cygan, Riesz products on noncommutative groups, Studia Math. 51 (1974), 115-123.

2. P. Eymard, L'algebre de Fourier d'un groupe localement compact, Bull. Soc. Math. France 92

(1964), 181-236. MR 37 #4208.
3. A. Figa-Talamanca and M. Picardello, Multiplicateurs de A(G) qui ne sont pas dans B(G), C

R. Acad. Sci. Paris Ser. A-B 277 (1973), A117-A119. MR 48 #11922.

4. M. A. Picardello, Lacunary sets in discrete noncommutative groups. Boll. Un. Mat. Ital. (4) 8

(1973), 494-508. MR 49 #9543.
5. D. J. S. Robinson, Finiteness conditions and generalized soluble groups, Ergebnisse der

Mathematik und ihrer Grenzgebiete, Band 62, Springer-Verlag, Berlin and New York, 1972. MR

48 #11314.
6. H. P. Rosenthal, A characterization of Banach spaces containing I , Proc. Nat. Acad. Sci.

U.S.A. 71(1974), 2411-2413.
7. S. Sakai, C*-algebras and W*-algebras, Ergebnisse der Mathematik und ihrer Grenzgebiete,

Band 60, Springer-Verlag, Berlin and New York, 1971.

8. E. Thoma, Uber unitdre Darstellung abzahlbarer, diskreter Gruppen, Math. Ann. 153 (1964),

111-138. MR 28 #3332.

Istituto Matematico dell'Universita di Milano, 20133 Milano, Italy


