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Abstract. All the irreducible and reducible elements in the Landweber

Novikov algebra are determined. A full set of relations mod reducibles is

given.

1. Introduction. Let 5* denote the Landweber Novikov algebra, and let S

be the kernel of the augmentation map. The aim of this paper is to compute

Q(S*) = S/S2, the module of irreducibles.

For every exponent sequence a with only finitely many nonzero terms,

Landweber [1] and Novikov [2] define an operation sa G S*. Moreover, the

sa's form a basis for S* as a Z-module.

For every exponent sequence a = (ax, . .., a„, • • • ), let ||a|| = 2/a/; and

|a| = 2a,-. Let A(a) denote the exponent sequence all of whose elements are

zero except 1 in the ath place. Our main theorem is

Theorem 1.1. (a) Q(S*) is generated by {sp»Am, spnA(2)\p prime, n > 0}, with

the only relations psp*A(X) G S2 for n > 2 and every p, pspA<X) G S2 for p ¥" 2,

Psp"A(2) GS2 for n> 1 and 2(sA(2) + j2A(1)) G S2.

(b) All the sa's are reducible except for a = pnA(l), p"A(2), 2p"A(l). The

only relations between irreducibles are those specified in (a) and sWm +

S2P"M,\) G S2 for p ¥= 2 and n > 0.

Our main computational tool is the following theorem due to Landweber

Let S+ be the dual algebra to S*. Let oa be the dual basis to sa. Then 5# is

a polynomial algebra with generators {o^a))a>x and

Theorem 1.2. The diagonal in S^. is given by

4>*Ku))=    2   (/+1)««®"m.-)-
\\a\\ + i = a

Added in proof. While writing this paper I heard that Aikawa [3] got the

same results. I would like to thank Shibata for reading this paper and

correcting many of the mistakes appearing in the original version.

2. Definition. If a = (a,, .. ., a„, . . . ), let vp(a) = min,(»'p(a1.)} and vp(nsa)

= max{0,^(a) - vp(n)}.
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Let us say that two exponent sequences a = {ax, . . ., att, . . . ), B

= {bx, . . ., b„,. . .) are disjoint if Ojbj = 0 for every i.

Theorem 2.1. (a) For every a,B we have sa ° s^ = A$a + j8 + 'S.XjS where

|a,| <|a + B\. If a and B are disjoint, then X = 1. Moreover, vp(XjS)

< min{pp{a), vp(B)).

(b) For n > 1 there exists a X E Z such that XsnA^a) = Sa^ mod S2, where

|a,| < n and Vq{\s ) < vq{ri) for every prime q. Moreover, X = I if n is not a

power of a prime, and X = p if n = pk for some prime p.

Proof of (a). We will prove (a) by passing to the dual. That is, if

<May) = Aaa ® ap + • • • witn A ^ °. then |Y| <|« + /3| unless y = a + B.

This will follow from 1.2 by trivial induction on |y|. We also have to show

that min{i>p{a), vp{B)} > vp{y) - vp{X). Let r = vp{y), i.e. y = pr8. Hence,

<P*(°y) = 4>MP' = (S ih% ® "a)' '

and we will get the results from the following lemma.

Lemma 2.2. 7/(2y,yr = 2A,2,, where the z/s are monomials in the y/s, then

vp(Zj) + vp(Xj) > r, where vp(z) = max^lBy with z = yp').

Proof of 2.1 (b). From (a) we have that if k + I = n, then

SkMa) ° slA(a) ~ [fr )SnMa) + 2 Va,

where j«r-| < n and vp(XjS ) < vp(n) for every prime p. But g.c.d. {(nk)} is the

same X defined in the theorem, and, hence, we can take an appropriate linear

combination of the above relations to get (b).

Corollary 2.3. For every n and a we have that

nSa  =   2   \,a,iSp'Ma)      mod S2
p,a,i

where i < vp(nsa).

Proof. The proof is by induction on |«|. If a is not of the form mA(a), then

there are disjoint B,y such that a = B + y. Then by 2.1(a), nsa = 'EnXjS^ with

^(nXjS^) < vp{nsa) and |a,| <\a\. Apply now the induction hypothesis to a,

and nXj.

If a = m&{a), do the same using 2.1(b).

Lemma 2.4.  For every a =£ b,

(a) sts(a) ° sMb) = SMa) + A(b) +  (b  +   l)sA(a + b).

(b) JA(a) ° S2A{b) = AJA(a) + 2A(fc) +  (b +   l)s^b) + A(a + b).

(C)   S2A(b) ° 5A(a) = A5A(n) + 2A(6) +  (a  +   ' )sMb) + Ma+ b) +  I        j       JsMa + 2b).-

X is the same as in b and X = I if a ¥^ b.

(d) sMa) = 0 mod S2 for every a =£ 1,2.

Proof, (a), (b), (c) are routine computations. To prove (d) we will have to

separate cases:
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(1) a odd, a ^ 1. Write a = b + c with b - c = 1. Then by (a), [iA(fc),

■sA(c)] = (b ~  c)sA(a) = sA{a)-

(2) a even, a ¥= 2. Write a = b + c with b - c = 2. Then as in (1) we get

2iA(a) = 0 mod S2.

Let a = 2 + 2Z>. Using (b), (c) and (a) we get that

[sA(.2)^2A(b)]  ~ (P ~ 2)sA(b) + A(b + 2) + ^sA(a)

and

^(6 + 2) ° sA(b) - sA(b) + A(b + 2) + (b +  l)s&(a).

Combining both we get

^(a) = P +l)(b-2)- 2]sA(a) mod S2.

But (b + 1) • (b - 2) is even and, hence, sA(a) G S2.

Lemma 2.5.

VA(a) ° Va(*) — iP +   0' VA(a + 6) +  V<A(a) + A(6))

(a) +   2   ac,*Va(<:) mod ^2   ^or a ^ ft-
c;k<n

Sp"A(.a) ° s2p"A(b) = ^P\HAM + 2A(b)) + (b  +   l)P Sp.,Acb) + A(a + fc))

(b) +   2   \rjt^*A(c)    mod^2.

J2p"A(ft) ° V^a) — A^ V<A(a) + 2A(*)) + (a +   1)P V(A(A)+A(a + d))

(c) +(atl)   V*<« + 2M +   2   \%*VMc)    mod5"2.
V       L       ' c;k<n

The constant X appearing in (b) and (c) is the same X as in 2.4.

(d) For every a =£ 1,2 we have sp»A^ e ^2-

Proof. The proof of (a), (b) and (c) are identical, so we will prove (b). By

2.1 we have that

VA(a)  ° J2P"A(M  = AP Sp"(A(a) + 2A(b))  + 2 Va,

with |a,-1 < 3p", and that for every prime q ¥= p, vq(XjS) = 0. We

want to show that the only possible a, in the sum with vp(at) > n is

p"(A(b) + A(a + b)). This will imply (b) by Corollary 2.3.
But if a,- = p"B and |a,-| < 2p", then /? must be of the form A(0 or

A(/) + A(s) or 2A(r). An immediate check leaves the only possibility B

= A(a) + A(a + b).

(d) The proof is by induction on n, the case n = 0 having been done in

2.4(d). For n > 0 one follows the proof of 2.4(d). The only extra fact which is

needed is that pspn^a) G S2 for a > 2,  but this will follow from psp„A(a)

«      = 2i<n;b\.bsP'A(b) aiK* our induction hypothesis. (Note that in the above sum

we have b > 2, so induction applies.)

Proof of Theorem 1.1. Let Ja|| = n with n not of the form/?"1 or 2pm.

Then sa = ^pia\jaspiAia) mod S2 where a ^ 1,2. Then by 2.5(d), sa is reduc-

ible.
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If ||«|| = p" or 2p", but a ¥= p"A(l),pnA(2) or 2p"A(l), then vp{a) < n and

sa = ^i,aKi,asp'is(a) w'm a ^= 1,2 and, as before, sa is reducible.

As for the remaining cases, we have already shown in the proof of 2.5(d)

that psp„A,a) E S2 for a > 2. The same proof works if a = 1 and p > 2. To

show that these are the only relations, look at:

•MVao)) = (°A(i) ® 1 + 1 ® °-A(1)y". So in any relation where sp.Am ap-

pears, it is with coefficient divisible by p. Hence, it is irreducible.

0*(Va.(2)) = (°2 ® 1 + 2o, ® a, + 1 <8> a2y". Hence, the only relation in

which sp»A(2) appears with a coefficient which is not divisible byp is

Va(0 ° Va(D = 2f'Sp"A(2) +  I       „   l-^'AU) +   •   •   •   •

Similarly, the previous relation is the only interesting one for s2p»Am. The

other terms in this expression are all in S2.

If p > 2 we have

(2p"\=2P" = 2    mod p.

Hence, 2{s2p„AO) + s2p„A(2)) E S2. We also have p{slp*A(X) + sp„A(2)) E S2 and

we get our theorem for p =£ 2. If p = 2 we have

Hence, 2s2„+iA(1) E S2 for every n > 1, which finishes our proof.
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