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EMBEDDINGS OF COMPACTA WITH SHAPE
DIMENSION IN THE TRIVIAL RANGE

GERARD A. VENEMA1

Abstract. In this paper a loop condition is defined which generalizes the

cellularity criterion and applies to compacta with nontrivial shape. It is

shown that if A", fc E", n > 5, are compacta which satisfy this loop

condition and whose shape classes include a space having dimension in the

trivial range with respect to n, then Sh(A") = Sh( Y) is equivalent to E" — X

« E" — Y. An application is given to compacta with the shape of a

compact connected abelian topological group.

1. Introduction and statements of main results. Recently several individuals

have studied special cases of the following general problem: if X and Y are

compacta in Euclidean H-space E", under what conditions is E" — X

fa E" — Y equivalent to Sh(A) = Sh(T)? The results of this paper concern

compacta whose shape classes include a space having dimension in the trivial

range with respect to n. We give a global homotopy condition under which the

equivalence holds for such compacta. Before stating our main result we make

some definitions.

Definition. Let A" be a compact subset of the manifold M. X is said to

satisfy the inessential loops condition (ILC) if for every neighborhood U of X

in M there exists a neighborhood V of A in U such that each loop in V — X

which is null-homotopic in V is also null-homotopic in U — X. (See §2 for the

definitions of other loop conditions and a discussion of some of the relation-

ships among them.) For any compactum X, the shape dimension of X (Sd(A))

is defined by Sd(A) = min{dim Y: Sh(A) = Sh(y~)}. We say that k is in the
trivial range with respect to«if2A:-r-2</?.

Theorem 1. Let X and Y be compacta in E", n > 5, satisfying ILC and

having shape dimension in the trivial range with respect to n. Then E" — X

fa En - Y if any only if Sh(A) = Sh(7).

As a consequence of Theorem 1 we prove the following theorem about

compacta with the shape of a topological group. For example, A and B in

Theorem 2 could be solenoids. Recall that every finite dimensional compact

connected abelian topological group is metrizable [16].
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Theorem 2. Let X, Y c E", n > 5, be globally l-alg compacta and let A, B

be compact connected abelian topological groups with 2 dim A + 2 < n. If

Sh{X) = Sh{A) and Sh(F) = Sh(fi) then the following are equivalent:

(i) E" - X aa E" - Y,

(ii)ShLY) = Sh{Y),and
(iii) A and B are topologically isomorphic.

Theorem 1 is related to several other recent results. Chapman [3] proved

that if dim X, dim Y < k and 3k + 3 < n, then there are copies A" and Y'

of X and Y, respectively, in E" so that Sh(A") = Sh(F) if and only if

E" - X' an E" - Y'. Geoghegan and Summerhill [5] refined Chapman's

theorem by reducing the unnecessary condition 3 k + 3 < n to the trivial

range and by making more explicit which copies of X and Y are acceptable.

Specifically, they required that the copies of X and Y be 1-ULC. Hollings-

worth and Rushing [7] improved this result by replacing 1-ULC (which is a

local condition) with the small loops condition (which is global). The global

condition is more desirable for a weak flatness theorem of this type-see [7] for

more details.

The work of Hollingsworth and Rushing is generalized in Theorem 1 since

the same conclusion is drawn for compacta which themselves do not neces-

sarily have dimension in the trivial range but merely have the shape of such.

Coram, Daverman and Duvall [4] have previously proved Theorem 1 in the

special case that dim X < n — 3 and Y is a finite polyhedron with dimension

in the trivial range.

Theorem 2 answers a question raised by J. Keesling.

The author wishes to express his appreciation to Professor T. B. Rushing

for a great deal of help with this research.

2. Definitions and notation. Let X be a compactum in the manifold M". X

is said to satisfy the cellularity criterion (small loops condition) if given a

neighborhood U of X there exists a neighborhood V of X in U (and a number

e > 0) such that any loop in V — X (any e-loop in V — X) is null-homotopic

in U — X. X is said to be globally l-alg in M if given a neighborhood U of X

there exists a neighborhood V of X in U such that any loop in V — X which

is null-homologous in U — X is null-homotopic in U — X.

These loop conditions are closely related. For example if dim X < n — 2,

then ILC is equivalent to the small loops condition. On the other hand, if X

has the shape of a point, then ILC is equivalent to the cellularity criterion. In

case Sd(.Y) < n — 3, Alexander duality shows that the inclusion induced

homomorphism HX{V - X) —> HX{V) is an isomorphism. Hence if Sd(A')

< n - 3, X globally l-alg implies X satisfies ILC. Finally,it can easily be seen

that if X has the shape of the inverse limit of a sequence of ANR's where

each of these ANR's has abelian fundamental group, then X is globally l-alg

whenever X satisfies ILC.

Throughout this paper the symbols as and = will have the following

meanings: as means "is homeomorphic to," "is isomorphic to," or "is

topologically isomorphic to," depending on the context; while = means "is

homotopic to." 77„, denotes reduced singular homology, H* Cech cohomol-

ogy and 77* Alexander cohomology with compact supports [13] all with

integer coefficients.
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All spaces are assumed to be metric.

For definitions of concepts related to shape theory, the reader is referred to

[1] and [10]. For all other definitions consult [12].

3. Compacta in standard position. We begin by making a definition [3]

which is basic to the entire proof of Theorem 1.

Definition. Let X c E" be a compactum and k = Sd(A). A is in standard

position if there exist sequences {Pt}^Lx and {A7,}"!, such that

(i) each P, is a compact polyhedron in E", dim P, < k,

(ii) each A/, is a regular neighborhood of P, in E",

(iii) each N!+x c int A/,., and

(iv)A-= nr-iNr
If dim X = k and 2/c 4- 1 < n.then the set of embeddings/: A -» E" such

that f(X) is in standard position is a dense G5-subset of the set of maps of A

into E" [5, Theorem 3.3]. In this section we show that compacta in E" which

satisfy ILC and have shape dimension less than n — 2 are in standard

position.

For any pair (A, B), the notation 77,(^4, B) = 0 means that every map /:

(A' x 0, 3A' X 0)->(,4, B) extends to a map/: (A' X [0, 1], 3A' X [0, 1] u
A' X 1) -> (A, B). (A' denotes the standard /-simplex.)

Lemma 1. Let X c E" be a compactum satisfying ILC and let k = Sd(A).

Then 77,(17, U — X) = 0, 0 < i < n — k — I, for every compact neighborhood

UofX in E".

Proof. It may be assumed that U is connected because otherwise the

following proof can be applied to each component of U. Since Sd(A") = k,

there exists a compactum Y with dim Y = k and Sh(A) = Sh(T"). Embed Y

in E2k+X in standard position; say Y = r\°°=xNj where each Nt is a regular

neighborhood of P, in E2k+X, dim P,. < k and Ni+1 C int A/,..

We first construct a convenient sequence of neighborhoods whose intersec-

tion is A. Let {/, A, Y}E.Eik*x and {g,, T, AJ^t+i^ be fundamental

sequences which show that A and Y have the same shape [2, Theorem 2.4].

Choose an integer j such that gj(Nj) c G for almost all i. Now choose a

neighborhood K of A such that/( V) c A/,, and g,/| F •=: 1 ̂  in U for almost

all /'. It may be assumed that g(.|P. is piecewise linear. Thus the inclusion map

B: V<^> U is homotopic in U to a map of V into g,(P,). Inductively then we

can construct a sequence of neighborhoods Vt in G and polyhedra Kt such

that dim Kt < /c, ^ u ^ c Vt_x, C\?=XV,, = A and the inclusion map F,.

-» F(_, is homotopic in Vt_x to a map of Vt into A,.

Consider the universal coverp: U^ U. Denotep~x(V/) by Vt andp~'(A)

by X. We show that if/(A) = 0 for q > k. Let /: K,. X [0, 1] -► K,_, be a
homotopy such that /0 = 1 v and /,(IQ c Kj. The diagram

U

^^    P

V,-=r->G
foPWt
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commutes, so/p|F, can be lifted to a homotopy gr Since gx{Vj) E p~x{K/)

and p is a local homeomorphism, dim gx{ V/) < k.

Let Vj+ and X+ denote the one-point compactifications of Vt and X

respectively. Since g, is a proper map, gt can be extended to g,: K,+ —> F,-,.

Hence the inclusion Vt+ c-> FJ+, factors up to homotopy through a map into

a space of dimension at most k. Thus the continuity axiom implies that

Hi{X+ ) = 0 for q > k. Finally [13, Corollary 6.6.12] shows that H?{X)
= 0,q>k.

Now Alexander duality [13, Theorem 6.9.10] gives Hq{U, U - X)

as H"~q{X) »0 for n - q > k + I. We look at the homology sequence of

the pair (U, U - X) and see that /70( U - X) = 0. So U - X is connected.

ttx{U, U - X) = 0 since if /: (A1 X 0,_3A' X 0)_-> {U, U - X), f can be
lifted to/': (A1 X 0, 3A1 x 0) -* {U, U- X). U - X is connected, so/'(0) and

/'(l) can be joined by an arc in U —X. The resulting loop is null-homotopic

in U. The projection down of this homotopy is the desired homotopy in U.

We next prove that trx{U - X) = 0. Let/: Sx -> U - A7 be a loop./ extends

to/: A2^ U. Consider p/: (A2, S')->(£/, U - X). Choose V c U to be a

neighborhood of X satisfying the inessential loops condition relative to U.

Now triangulate A2 so that each simplex whose image intersects X is mapped

into V. Using the fact that ttx{V, V — X) = 0 (by the same argument as was

used to show that trx{U, U — X) = 0), we can push the image of the

1-skeleton of this triangulation off X. If a is a 2-simplex in A2, p/|3a:

3a —> V - X and pf\ 3a ^ 0 in V, sop/|a may be replaced by a map of o into

U - X which agrees with p'f on do. Thus pf\S' r~ 0 in U - X. Lifting this

homotopy, we see that / =  0 in U - X.

Finally, we apply the relative Hurewicz Theorem [13, Theorem 7.5.4] and

conclude that tt.{U, U -X) as H,{U, U -X) = 0, 2 < / < n - k - 1. The

homotopy lifting property now can be used to show that 7r,(t7, U — X) = 0,

i < n - k - 1.

Lemma 2. Letr_X E E"be a compactum such that Sd(Ar) < n — 3. Given a

neighborhood U of X there exists a neighborhood V of X such that for any

compact polyhedron K c V with dim K < n — 3 there is a polyhedron P and a

regular neighborhood N of P such that K c int N c N c U and dim P

< Sd(A-).

Proof. The proof is by induction on k = dim K. If k < Sd(A'), P = K and

V = U will work; so it may be assumed that k > Sd(A') and that the lemma

is true for polyhedra of dimension less than k. Choose V c U using this

inductive hypothesis. As before choose a neighborhood V of X in V and a

polyhedron P' c V such that dim P' < Sd(A') and the inclusion /!<=-» V is

homotopic in V to a map of V into P'.

Let/: K X [0, ]]-> V be a homotopy such that/0 = 1^ and fx{K) c P'■

By Zeeman's Piping Lemma [15, Lemma 48], we may assume that there exists

a polyhedron J c K X I such that

{\)S{f)EJ,
(2) dim J < 2k - n + 2 < k - 1,
(3) dim[7 n (A^-' X [0, 1])] < 2k - n + 1 < k - 2, and
(4) K X [0, l]^J u {Kk~x X [0, 1]) u K x l.(Here A" denotes the i-

skeleton of K.)
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Let L be a (k — 2)-dimensional subpolyhedron of K such that L D Kk~2

and L X [0, 1] D J n (A'*-1 X [0, 1]). By induction it may be assumed that

f(L X[0, l]\j J) U P' G N G U where A is a regular neighborhood of

some polyhedron P with dimension < Sd(A). It remains only to engulf

(k — 1)- and /c-simplexes of K.

Kk~x X[0, 1] NAT*"2 X[0, 1] u Kk~x X 1 u (In K"-x) X[0, 1].

The image of the latter set is already contained in N and contains

S(/|Kk~x X [0, 1]). Following the image of this collapse, Kk~x can be

engulfed with A. Similarly K X [0, l]\;u^"'x[0, 1] u K X 1, so A

can be pushed out to cover all of K.

Lemma 3. Let X c E", n > 5, be a compactum with Sd(A) < n - 3. Then

X satisfies ILC if and only if X is in standard position.

Proof. It suffices to show that given a neighborhood U of A there exists a

polyhedron P in U with dim P < Sd(A) and a regular neighborhood N of P

such that A c int N c A c U. Let V c U be given by Lemma 2 and let M

be a compact PL manifold neighborhood of A in V. Denote the (n - 3)-

skeleton of M by A/""3 and the dual 2-skeleton by M2. By Lemma 2 there

exists a polyhedron P with dim P < Sd(A) and a regular neighborhood A of

P such that Af "~3 c int A c A c G.

By Lemma 1 and Stallings' engulfing theorem [14], there exists a PL

homeomorphism hr. int M —> int M with compact support such that

hx(int M - X) D M^ n int M. Extend hx via the identity to U. Let /?2 be a

homeomorphism of G which pushes A across the join structure between

A/"-3 and M2 until M c /i,(G - A) u h2(int N). Then hxxh2(N) is the

regular neighborhood we are looking for.

4. Proofs of Theorems 1 and 2. In this section we complete the proof of

Theorem 1 and prove Theorem 2. The following lemma is used to keep an

inductive argument going in the proof of Theorem 1.

Lemma 4. Let A, Y c E", n > 5, be compacta in standard position with

shape dimensions in the trivial range with respect to n and let {/, A, 7} and

{/■', Y, X) be fundamental sequences which are homotopy inverse to one

another. Let U0 be a neighborhood of X and h be a PL homeomorphism of E"

such that Y c h(U0) and such that there exists a neighborhood W0 of Y with

h~x\ W0 ̂  f'\ W0 in UQfor almost all i. Then for every open set V0, Y c V0

C h(U0), there exists a PL homeomorphism q of E" such that q\E" — U0

= h\E" - U0,X G q~x(V0), and q\ G, » /|G, in V0for almost all i where Ux
is some neighborhood of X.

Proof. Assume that X = r\jx=xMJ where each Mj is a regular neighbor-

hood of a compact polyhedron Ly and that dim L, < Sd(A). Choose neigh-

borhoods V g V0 of Y and U C U0 of X and an integer i0 such that

/T'|K- f'\V in G0,/|G- /+1|Gin V, and/'/|U = lv in G0 for i > i0.
Let/ be an integer large enough so that M} c U.fjLj can be approximated

by a PL embedding/.

Notice that   /,"' °/- £ °/« /'0 %|L, -   lLj in U0.

So/ =<  h\Lj in h(U0). Hence there exists a PL homeomorphism rof£" which

is the identity outside h(U0) and such that rh\Lj = / [6]. It may be assumed
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that rh{Mf) c V. Taking q = rh and Ux = Mj gives the desired conclusion.

Proof of Theorem 1. Suppose that Sh(X) = Sh(F). A homeomorphism of

E" — X onto E" — Y can be constructed using the technique of [5, Lemma

4.2]. Lemma 4 above replaces Lemma 4.1 of [5]. Now suppose that E" — X

as E" — Y. There exist X' and Y' with dimension in the trivial range

satisfying Sh(A) = Sh(A") and Sh(F) = Sh(F'). It may be assumed that A"
and Y' are embedded in E" as 1-ULC subsets [7, Lemmas 2 or 5, §3]. The

first part of the theorem implies that E" - X' as E" - Y', so Sh(X) = Sh( Y)

by [5] again.

Proof of Theorem 2. The implication (iii) => (ii) is obvious and (ii) => (iii)

is exactly Corollary 1.3 of [9]. Theorem 1 gives (iii) => (i). Our proof that

(i) => (iii) actually establishes a stronger result which we state as Theorem 3.

Theorem 3. Let X, Y c E" be compacta and let A, B be compact connected

abelian topological groups with Sh(A") = Sh{A) and Sh(F) = Sh(7?). Then

E" - X as E" - Y implies A as B.

Proof. Suppose E" - X as E" - Y. Then by Alexander duality [13,

Theorem 6.2.16] 77X{X) as 77X{Y); hence HX{A)^HX{B) [10, Theorem 16].

Therefore char A as char B [8, Theorem 1.4] and so Pontryagin duality [11,

Theorem 52] shows that A as B.

References

1. K. Borsuk, Concerning homotopy properties of compacta, Fund. Math. 62 (1968), 223-254.

MR 37 #4811.

2.   - , Remark on a theorem of S. Mardesic, Bull. Acad. Polon. Sci. Ser. Sci. Math.

Astronom. Phys. 19 (1971), 475^183. MR 48 #2986.

3. T. A. Chapman, Shapes of finite dimensional compacta, Fund. Math. 76 (1972), no. 3,

261-276. MR 47 #9531.

4. D. Coram, R. Daverman and P. Duvall, Jr., A loop condition for embedded compacta, Proc.

Amer. Math. Soc. 53 (1975), 205-212.

5. R. Geoghegan and R. R. Summerhill, Concerning the shapes of finite dimensional compacta,

Trans. Amer. Math. Soc 179 (1973), 281-292.

6. H. Gluck, Embeddings in the trivial range, Ann. of Math. (2) 81 (1965), 195-210. MR 30
#3456.

7. J. G. Hollingsworth and T. B. Rushing, Embeddings of shape classes of compacta in the

trivial range (to appear).

8. J. Keesling, An algebraic property of the Cech cohomology groups which prevents local

connectivity and movability, Trans. Amer. Math. Soc. 190 (1974), 151-162.

9.    _ , Shape theory and compact connected abelian topological groups, Trans. Amer.

Math. Soc 194 (1974), 349-358. MR 49 #9803.

10. S. Mardesic and J. Segal, Shapes of compacta and ANR-systems, Fund. Math. 72 (1971), no.
1,41-59. MR 45 #7686.

11. L. S. Pontrjagin, Continuous groups, 2nd ed., GITTL, Moscow, 1954; English transl.,

Topological groups, Gordon and Breach, New York, 1966. MR 17, 171; 34 #1439.

12. T. B. Rushing, Topological embeddings, Pure and Appl. Math., vol. 52, Academic Press,

New York and London, 1973. MR 50 # 1247.

13. E. H. Spanier, Algebraic topology, McGraw-Hill, New York, 1966. MR 35 # 1007.

14. J. R. Stallings, The piecewise-linear structure of Euclidean space, Proc. Cambridge Philos.

Soc. 58 (1962), 481—488. MR 26 #6945.

15. E. C. Zeeman, Seminar on combinatorial topology, Mimeographed notes, Inst. Hautes

Etudes Sci., Paris, 1963.

16. J. D. Newburgh, Metrizalion of finite dimensional groups, Duke Math. J. 20 (1953), 287-293.

MR 14, 949.

Department of Mathematics, University of Texas, Austin, Texas 78712


