SHORTER NOTES

The purpose of this department is to publish very short papers of an unusually elegant and polished character, for which there is no other outlet.

A REMARK ON THE FIRST NEIGHBOURHOOD RING OF A NOETHERIAN COHEN-MACAULAY LOCAL RING OF DIMENSION ONE

T. DOUSSOUKI

ABSTRACT. There is an isomorphism between the first neighbourhood ring of a noetherian Cohen-Macaulay local ring A of dimension one and the ring of endomorphisms of a large power of its maximal ideal.

Let A be a noetherian Cohen-Macaulay local ring of dimension one and \mathfrak{m} be its maximal ideal.

An element a of m' is superficial of degree t if, for every large integer n, $m^n a = m^{n+t}$. The following results are well known: every superficial element is regular; for every large integer t, there exists a superficial element of degree t [4]. The first neighbourhood ring R of A is the subring $\{(x/y)|x \in m', y \text{ superficial of degree } t\}$ of the total quotient ring K of A. For every large integer n, the product $Rm^n = m^n$ [2, 12.1]. Let v be the least such n.

Let $\operatorname{End}_A(\mathfrak{m}^n)$ denote the algebra of A-endomorphisms of \mathfrak{m}^n . There is a sequence

$$(1) A \subset \operatorname{End}_{A}(\mathfrak{m}) \subset \cdots \subset \operatorname{End}_{A}(\mathfrak{m}^{n}) \subset \cdots . (1)$$

THEOREM. 1. The integer v is the least integer n such that $xm^n = m^{n+1}$ for every superficial element x, where t is the degree of x.

2. For every integer $n \ge \nu$, the ring $\operatorname{End}_A(\mathfrak{m}^n) = \operatorname{End}_A(\mathfrak{m}^n)$ and there exists an isomorphism F of A-algebras of $\operatorname{End}_A(\mathfrak{m}^n)$ onto R such that $F(\operatorname{Hom}_A(\mathfrak{m}^n,\mathfrak{m}^{n+1}))$ is the ideal $R\mathfrak{m}$ of R.

PROOF. 1. Let x be a superficial element of degree t. Then length(m^n/xm^n) = te where e is the multiplicity of A [2, 12.5]. If $xm^n = m^{n+t}$, then

$$\operatorname{length}(\mathfrak{m}^n/x\mathfrak{m}^n) = \sum_{i=0}^{t-1} \operatorname{length}(\mathfrak{m}^{n+i}/\mathfrak{m}^{n+i+1}) = te.$$

Received by the editors December 13, 1974.

AMS (MOS) subject classifications (1970). Primary 13H16.

Key words and phrases. Local ring, Cohen-Macaulay, first neighbourhood ring, endomorphisms, superficial element.

As length($\mathfrak{m}^{n+i}/\mathfrak{m}^{n+i+1}$) is less than e, we must have length($\mathfrak{m}^n/\mathfrak{m}^{n+1}$) = e. Then $n \ge \nu$ [2, 12.10].

On the other hand, x is superficial of degree t if and only if $Rx = Rm^t$. As $Rm^{\nu} = m^{\nu}$, $Rxm^{\nu} = Rm^tm^{\nu}$ and so $xm^{\nu} = m^{\nu+t}$.

2. Let t be an integer such that, for every integer $s \ge t$, there exists in m^s a superficial element of degree s. Let $b \in m^t$ be a superficial element of degree t. If k is a large integer, $a = b^k$ is superficial of degree s = kt and $Ra = m^s$. Suppose $n \ge \nu$. Then $m^n a = m^{n+s}$ by 1. If c is superficial of degree n + s, then c = ad where $d \in m^n$ is superficial of degree n.

Define the homomorphism $F: \operatorname{End}_A(\mathfrak{m}^n) \to R$ by $F(\phi) = \phi(d)/d$.

For every $z \in \mathfrak{m}^n$ and $\phi \in \operatorname{End}_A(\mathfrak{m}^n)$, we have $\phi(zd) = z\phi(d) = d\phi(z)$ and so $\phi(z) = (\phi(d)/d)z$. So F is one to one. On the other hand since $Ra = \mathfrak{m}^s$, every $\lambda \in R$ is x/a where $x \in \mathfrak{m}^s$. But $a\mathfrak{m}^n = \mathfrak{m}^{s+n}$; hence for every $z \in \mathfrak{m}^n$, xz belongs to the ideal $a\mathfrak{m}^n$, so λz belongs to \mathfrak{m}^n . Define ϕ by $\phi(z) = \lambda z$. Then $F(\phi) = \lambda$ and F is onto.

If $\phi \in \operatorname{Hom}_{\mathcal{A}}(\mathfrak{m}^n, \mathfrak{m}^{n+1})$, then $\phi(d) \in \mathfrak{m}^{n+1} = R\mathfrak{m}^{n+1}$. As d is superficial of degree n, we have $R\mathfrak{m}^n = Rd$ and so $\phi(d) \in Rd\mathfrak{m}$ and $F(\phi) = \phi(d)/d$ belongs to $R\mathfrak{m}$.

Conversely, if $\alpha \in R\mathfrak{m}$, write $\alpha = \sum \lambda_i e_i$ where $\lambda_i \in R$ and $e_i \in \mathfrak{m}$ to see that the element of $\operatorname{End}_A(\mathfrak{m}^n)$ defined by $\phi(z) = \alpha z$ belongs to $\operatorname{Hom}_A(\mathfrak{m}^n,\mathfrak{m}^{n+1})$.

REFERENCES

- 1. J. P. Lafon, Idéaux maximaux de l'anneau des endomorphismes d'un idéal, J. Reine Angew. Math. 239/240(1969), 88-96. MR40 #7239.
- 2. E. Matlis, One-dimensional Cohen-Macaulay Rings, Lecture Notes in Math., vol. 327, Springer-Verlag, Berlin and New York, 1973.
- 3. D. G. Northcott, The neighbourhoods of a local ring, J. London Math. Soc. 30(1955), 360-375. MR17, 86.
- 4. _____, On the notion of a first neighbourhood ring with an application to the $AF + B\Phi$ theorem, Proc. Cambridge Philos. Soc. 53(1957), 43-56. MR18, 462.

DEPARTMENT OF MATHEMATICS, UNIVERSITÉ PAUL SABATIER, 118, ROUTE DE NARBONNE, 31400 TOULOUSE, FRANCE

Current address: 16, rue du Lycée, 92330-Sceaux, France