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SHORTER NOTES

The purpose of this department is to publish very short papers of an unusually elegant and
polished character, for which there is no other outlet.

A REMARK ON THE FIRST NEIGHBOURHOOD RING
OF A NOETHERIAN COHEN-MACAULAY LOCAL RING OF
DIMENSION ONE

T. DOUSSOUKI

ABSTRACT. There is an isomorphism between the first neighbourhood ring
of a noetherian Cohen-Macaulay local ring 4 of dimension one and the ring
of endomorphisms of a large power of its maximal ideal.

Let A be a noetherian Cohen-Macaulay local ring of dimension one and m
be its maximal ideal.

An element a of m’ is superficial of degree ¢ if, for every large integer n,
m"a = m"*’. The following results are well known: every superficial element
is regular; for every large integer ¢, there exists a superficial element of degree
t [4]. The first neighbourhood ring R of A4 is the subring {(x/y)|x € m’, y
superficial of degree ¢} of the total quotient ring K of A. For every large
integer n, the product Rm” = m” [2, 12.1]. Let » be the least such n.

Let End, (n") denote the algebra of 4-endomorphisms of m”". There is a
sequence

1) ACEnd(myc--- CcEndy(m")C---. 8]

THEOREM. 1. The integer v is the least integer n such that xm" = m"*! for
every superficial element x, where t is the degree of x.

2. For every integer n > v, the ring End, (m") = End, (") and there
exists an isomorphism F of A-algebras of End,(m") onto R such that
F(Hom  (m",m"*")) is the ideal Rm of R.

PROOF. 1. Let x be a superficial element of degree ¢. Then length(m”/xm”)
= te where e is the multiplicity of 4 [2, 12.5]. If xm" = m"*’, then
=1
length(m”/xm") = ) length(m"*/m"+/*1) = fe,
i=0
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As length(m"*/m"*'*1) is less than e, we must have length(m”/m"*') = e.
Then n > » [2, 12.10].

On the other hand, x is superficial of degree ¢ if and only if Rx = Rm'. As
Rm’ = m*, Rxm” = Rm'm” and so xm” = m"**.

2. Let ¢ be an integer such that, for every integer s > ¢, there exists in m’ a
superficial element of degree s. Let b € m’ be a superficial element of degree
t. If k is a large integer, a = b* is superficial of degree s = k¢t and Ra = m".
Suppose n > ». Then m"a = m"** by 1. If ¢ is superficial of degree n + s,
then ¢ = ad where d € m" is superficial of degree n.

Define the homomorphism F: End (m") - R by F(¢) = ¢(d)/d.

For every z € m"” and ¢ € End,(m"), we have ¢(zd) = z¢(d) = d¢(z) and
so ¢(z) = (¢(d)/d)z. So F is one to one. On the other hand since Ra = nv’,
every A € R is x/a where x € m®. But am” = m**”; hence for every z € m",
xz belongs to the ideal am”, so Az belongs to m". Define ¢ by ¢(z) = Az. Then
F(¢) = A and F is onto.

If € Hom,(m", m"*"), then ¢(d) € m"*' = Rm"*!. As d is superficial of
degree n, we have Rm” = Rd and so ¢(d) € Rdm and F(¢) = ¢(d)/d
belongs to Rm.

Conversely, if « € Rm, write « = ZAe; where A; € R and ¢; € m to see that
the element of End,(m") defined by ¢(z) = az belongs to Hom ,(m",m"*1).
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