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AN APPLICATION OF REPRESENTATION
THEORY TO P/-ALGEBRAS

J0RN B. OLSSON AND AMITAI REGEV1

Abstract. By realizing that the multilinear identities of degree n of a PI-

algebra form a left ideal in the group algebra /•"[£„], it is possible sometimes

to use the representation theory of the symmetric group Sn in the study of T-

ideals and PZ-algebras. In this note we demonstrate this method by proving:

Theorem. // the codimensions of a Pi-algebra are bounded, then they are

eventually bounded by 1.

For basic definitions and notations, e.g., F[X], Vn, Qn, codimension se-

quence, etc. we refer the reader to [6]. The correspondence

extends to an isomorphism Vn «s F[Sn ], where F[Sn ] is the group algebra of Sn

over F. We thus identify V„ with F[S„]. If a G Sn andf(xx,. ..,x„) G V„ are

given, we consider a and / as elements in the same group algebra Vn, so that

the product a • / is well defined. One verifies that

o -f(xx,...,x„) = f(x„x,...,x0n).

It follows that for a T-ideal Q, Q„ is a left (but generally not right) ideal of V„.

Since in characteristic 0 the multilinear identities completely determine all the

identities of a PZ-algebra, we shall assume charF = 0. It is well known that

in this case Vn is completely reducible over itself [1, §15]. Let M be a (left)

submodule of V„. Define the length of M, l(M), to be the number of
irreducible components in a direct decomposition of M, and define the

colength l'(M) to be T(M) = l(Vn) — l(M), the length of a direct complement

of M in Vn. By the Krull-Schmidt theorem, this is well denned. For a given T-

ideal Q, we thus obtain the sequence of colengths l'(Qn).

Let us begin with a result from the representation theory of Sn.

For any integer n > 0, it is well known that S„ has exactly 2 irreducible

representations of degree (dimension) 1, namely the unit and the sign

representations. Denote by an the minimal dimension of a nonlinear represen-

tation of S„. We prove

Proposition 1. Let n > 7. Then

(i) an = n - 1.
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(ii) There are exactly two irreducible representations of Sn of degree n — 1.

They correspond to the partitions in — 1,1) and (2,1     ) of n.

Note, (i) fails only for n = 4 and (ii) only for n = 6.

Proof. We use basic facts from the representation theory of Sn. Let Par(«)

denote the set of all partitions of n, i.e., sequences of integers X = (at,..., ak),

satisfying a, > a2 > • • • > ak and ax + ■ • • + ak = n. For A E Par(«) we

associate the Young diagram, defined in [2, p. 20], which we denote by F(X).

To a given X e Par(n) there is a canonical way to associate an irreducible

representation [X] of S„ [2, pp. 60-63]. Our main tool is the Branching

Theorem (B.T.) [2, p. 85], which describes the decomposition into irreducible

components of the restriction [X]\s of [X] to Sn_x in terms of Young

diagrams. We start by

Lemma 2. Let X e Par («), n > 5. Assume that deg[X] = /A > 1. //[X]ls
w irreducible, then [X]\s    does not have a linear irreducible component.

Proof. Suppose not. Since [\]\s _ is irreducible, the B.T. implies that F(X)

is rectangular. Therefore, there exists a factorization n = k ■ I, such that

X = ikl). We assume that [X]|s has a linear component. Since the linear

representations of Sn_2 correspond to the partitions (1"~2) and (« — 2), B.T.

implies that k = I = 2. This is because removing 2 squares in the bottom

right-hand corner of F(X) should give y(l"~2) or Yin - 2). Thus n = k ■ I

= 4, a contradiction.

We now continue the proof of Proposition 1 and apply induction. It is true

for n = 7, 8 by the tables in [5, p. 265 ff]. We assume the result holds for

n — 1 > 8 and that there exist X E Par (/?) such that 1 < /x < n — 2, where

fK = deg [X]. By the induction hypothesis and B.T., either f\— n — 2 and

[X]|5 is irreducible, or [X]\s decomposes into linear components. The latter

is impossible, since then An-thc alternating group-would be contained in the

kernel of [X]. Therefore fx =n~2. Again, by the induction hypothesis, [X]lsn_2

must have a linear component, contrary to Lemma 2.   This proves (i).

Suppose X G Par(n), A # (n - 1,1), (2, l"-2) and/x = n - 1. B.T. implies

then that [X]|s is irreducible, and the induction hypothesis for n — 2 implies

that [X]\s    has a linear component, again contradiction Lemma 2.

Remark. One can define the next sequence of degrees of representations,

etc., and try to compute or give an asymptotic estimate to them. This has been

done by R. Rasala.

We will also need

Proposition 3. Let Q be a T-ideal generated by polynomials of degree < d.

Let n J> d. Then

Q„+i = TiQn) n vn+x.

Here TiQn) is the T-ideal generated by the polynomials of Qn.

Proof. Since char F = 0, we may assume that Q is generated by multilinear

polynomials. (See Lemma (4.1) in [4].) Denote Qn+X = F(Q„) fl Vn+X. Ob-

viously Qn+1 C Qn+,. Now Qn+ x is linearly spanned over F by multilinear

polynomials of the form a/(Af,,..., Mr)b, where fixx,..., xr) is among the

multilinear generators of Q ir < d) and a, b, Mx, ... ,Mr are monomials. We
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show that such a polynomial is in Q„+x. If a # 1, assume a = xn+x a'. Then

a'f(Mx,...,Mr)b G Q„, so xn+xa'f(Mx,... ,Mr)b G Q„+\ ■ The same argu-

ment can be used if b ^ 1, so assume a = b = 1.

Since f(Mx,... ,Mr) is multilinear of degree n + 1 and n + 1 > d > r, it

follows that at least one of the monomials Mt have degree at least 2. We may

assume without loss of generality that Mx = M\ x„xn+x. Then

f(M\xn,M2,...,Mr) G Qn,

and we conclude again, that^M', xnxn+x, M2,..., Mr) G Qn+X.

We are now going to prove the main theorem after a sequence of

preliminary results.

In the following, {c„} is the sequence of codimensions for a T-ideal Q.

(c„ = cn(Q).)

Lemma 4. // c„ < & for all n, then cn < 2 for n > k + 1.

Proof. Let Q„ = Q n ^. Write ^ = Qn © /„ (as V„ left modules). Ob-

viously, c„ = dim ^. Decompose /„ as a direct sum of irreducible P^-left

modules. At most two of the components have dimension 1, and the others

have dimension > n — 1 by Proposition 1. Therefore, if n > k + 1, there can

be only linear components in J„, and cn < 2.

Lemma 5.(1) If cn = 0, then cn = 0/w a// n > N. (2) Assume cn ¥- Ofor all

n. IfcN = 1, then cn = 1 /or all n > A.

Proof. (1) cN = 0 implies QN = VN. Then obviously Q„ = Vn for all

« > A.
(2) Assume cN = 1. In the previous notation, VN = QN © JN There are

exactly two one-dimensional left-submodules of V„, generated by the standard

polynomial sN = 2CTGiN (—0" a and the unitary polynomial uN = ^,a^Sfl a.

We claim that JN = FuN. If not, then uN G QN [1, §25]. As a polynomial,

uN = 2„ xa • • • xg .By substituting xt -* x for all i, uN implies xN. But then

the Nagata-Higman theorem implies that for / = 2N — 1, Q, = V:, so ct = 0,

contradicting our assumption.

We conclude that JN = FuN. Therefore QN = CN, where C = /"([jc.y]).

By Proposition 3, we get Qn = C„ for n > A, so cn = 1 for n > A.

To prove the main theorem we need only exclude that c„ is eventually equal

to 2.

Lemma 6. Lef <i > 2 a/W P = T([jc, - - ■ Jcrf, jcd+1 ]), and let [hn] be the

codimensions. Then hn = 1, if n > d + 2.

Proof. Assume « > c? + 2. If a E Sn, let A/a = x0] ■••x0h. Define an

equivalence relation on the elements of Sn by

o~ p**Mg-MpE P„.

Now G = {a G Sjo ~ (1)} is a subgroup of S„, because if a, p G G, then

KP = °K m oM(x) = Ma = M(1)       (mod P„)

so op G G.

We want to show G = Sn and to do this we need only show (k, k + 1) G G
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for k = 1, 2, ..., n — 1. Since n - 2 > d, we get, modulo Pn,

x\ ' ' ' xn = xn x\ xn-1

— xkxk + l ' ' ' xnx\ ' ' ' xk-\   — xkxk+2 ' ' ' xnx\  ' ' ' xk-1 xk +1

— xk+2 ' ' ' xnx\ ' ' ' xk-\ xk + \xk

— xl  '" xk-l xk + \xkxk+2 ' ' ' xn

for any k, 1 < k < n — 1, whence ik, k + 1) E G.

This shows G = S„, so h„ < 1. But T([xx • ■ • xd,xd+x]) C Ti[x,y]) = C,

and C has constant codimensions 1. Therefore hn = 1.

Let us remark:

Lemma 7. Lef u = 2a "a a G K> aa G f- ^ew

^e^«2 (-l)°a0 # 0,   «„eli^2«^0.
a

This is because s„v = (2ff (-l)aa„)j„ and «„f = (20 «„)«„.

Corollary 8. Let v = [xx • ■ ■ xd,xd+x] — (1) - (1,2,...,d + I). If d is

even, then ud+x & Vd+Xv and sd+x g Vd+Xv.

Proof of main theorem. By a previous remark, if Q is a counterexample

to the theorem, then the codimensions are eventually 2. Suppose cn = 2 for

n > N. Then for n > N, Vn = Qn © /„, where Jn = Fun © Fsn. Let n > A be

odd. Then [xj • • • xn_x,xn] E Qn by Corollary 8, so P = F([x, • • • x„_i,^„])

C Q. If {/i^} are the codimensions for P, then by Lemma 6, hk = I for

/c > 2« + 1. Obviously, hk > cft for k > «, which is a contradiction.

Aote. From the proof it follows that if c„ < m for all n, then c„ < 1 for

n > w + 3. Also, for « sufficiently large, Q„ = Vn or (9„ = Cn, where

C = F([x,y]).

It is possible to combine information about codimensions with Proposition

1 to estimate the colength sequence. Using the technique of Lemma 4, it is

easy to show

Proposition 9. Let cn be the codimensions, l'n the colengths of a T-ideal. If

cn < ik + l)n — k, where k > 0 is an integer, then T„ < k + 2. In particular, if

cn < n, then T„ < 2.

Note. If cn < n for all n, then eventually either c„ = n, c„ = 1 or c„ = 0.

This follows from Proposition 1, Lemma 5 and the fact that, if ck = k — 1 for

some k > 5, then eventually cn = 0. (If ck = k — 1, then Fuk C Qk.)

We conclude by giving two examples where c„ < n.

1. Let fix) be a polynomial of degree 3 which is not an identity for the

Grassmann algebra E. Q = F([[x,y],z]) is the ideal of identities of E, [4]. Let

P = F([[x,y], z],f). It was proved (unpublished) by the second author that

cniP) < n.

2. Let Q = Ti[x,y] ■ z). Then cniQ) = n, [3]. In this case, l'n = 2 for all

n > 2.
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Final remarks. 1. An alternative proof of Proposition l(i) can be found in

[*], as an appendix to that book.

2. After finishing this paper, the authors learned from Professor D. S.

Passmann that he is able to prove our main theorem for arbitrary characteris-

tic, provided that the P/-algebra has an identity element. This approach to the

problem is quite different from ours.
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