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ON GROUPS OF FINITE WEIGHT

P. KUTZKO

Abstract. A subset 5 of a group G is said to normally generate G if the

smallest normal subgroup of G which contains S is G itself. If a is minimal

with the property that there exist a set of cardinality a which normally

generates G then G is said to have weight a. It is shown that if G is a group

of finite weight and if the lattice of those normal subgroups of G which are

contained in the commutator subgroup G' of G satisfies the minimum

condition then the weight of G is equal to the weight of G/G'.

Let G be a group and let S be a subset of G. Then the normal closure, (,S),

of S in G is defined to be the smallest normal subgroup of G which contains

S. If G is a nontrivial group and if the cardinal a is minimal with the property

that G contain a subset of cardinality a whose normal closure is G, then

following [1] we say that G has weight a and write w(G) = a; we define the

weight of the trivial group to be one. Questions concerning the weight of a

group and especially the relation between the weight of a group and that of its

abelianization arise naturally in the study of knot groups [1], [3]. In particular,

it is conjectured by Gonzalez-Acuiia in [1] that for every finite group G,

w(G) = 1 if and only if w(G/G') = I. (An example of Kervaire [2] shows that

the analogous conjecture for finitely generated, infinite groups is false.) The

purpose of this paper is to prove the following more general result.

Theorem. Let G be a group of finite weight and let £ be the lattice of normal

subgroups of G which are contained in the commutator subgroup G' of G. Then if

£ satisfies the minimum condition, w(G) = w(G/G').

Proof. Let A be a normal subgroup of G which is contained in G' and is

minimal with the property that w(G/N) = w(G/G'). We wish to show that

A = (1). Set w = w(G/G') and let S = {gx,... ,gw) be a subset of G/N such

that <5> = G/N. For i = 1,2, ..., w, pick g, in G which maps onto g, under

the natural map from G to G/N, set S = {gx,...,gw} and let K = <5> n A.

Then since G = A<5>, if K = N, then G = <5> so that A = (1). Suppose

now that K ¥= A. Then since N/K is isomorphic to G/(S), N/K has finite

weight from which we may conclude that A has a proper normal subgroup L

which contains K such that w(N/L) = 1. We note that L is in fact a normal

subgroup of G since G/K is the direct product of its subgroups N/K and

(S}/K. We now show that w(G/L) = w(G/N) from which our theorem will

follow immediately.

First, we note that G/L is naturally the direct product of its subgroups
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(S}/K and NjL and that N/L is contained in {G/L)'. From this it follows that

N/L is contained in {N/L)' so that N/L is perfect. Pick x in A so that N/L is

the normal closure of the image x in N/L of x under the natural map from A

to N/L; let gx be the image of gx in (S}/K under the natural map from <5) to

{S)/K and let y be any element of N/L. Then [x£1;y] = [x~, y] in G/L, and

thus if we denote the normal closure in N/L of the set of elements [x~,y], y in

N/L, by Af, then we see that Af is contained in <xg,). However, since

N/L = <x>, {N/L)/M is cyclic and since N/L is perfect, we conclude that

N/L = Af so that N/L is contained in (xgx) and, hence, A is contained in

<xgx}L.
Setting F = (xgx, g2,..., gw > and noting that x is an element of A we see

that G = <5>A = <F>A = (T)L. Thus G/L is the normal closure of the

image of T in G/L under the natural map from G to G/L and since

w{G/L) > w{G/N), we have shown that w{G/L) = w{G/N) = w{G/G').
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