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Abstract. If a weakly compact convex set K in a real Banach space X is

strongly exposed by a dense set of functionals in X', it is proved that the

functionals which expose K form a residual set in A". If v. & -* X is a

measure, it follows that the set of exposing functionals of its range is a

residual Gs in A". This, in turn, is found to be equivalent to a theorem of B.

Walsh on the residuality of functionals x' e X' for which x' ° v = v.

If the set of exposed points of vi&) is weakly closed and vA is the restriction

of v to any set A 6 S, it is further proved that every exposed point of the

range of vA is of the form v{A n E), where E B & and d,E) is an exposed

point of v(&).

1. Introduction. Throughout assume A to be a real Banach space, X' the

dual of X, and v a measure defined on a a-algebra 6? of sets with values in X.

As proved by Bartle, Dunford and Schwartz [3], there exists a finite positive

measure A on & such that v = X. As a refinement of this theorem, Rybakov [7]

proved that there exists a functional x' E X' such that the signed measure

x' o v = v. Such functionals have, in turn, been proved by B. Walsh [9] to

form a residual Gs set in X'.

For any set K in X, it may be recalled that a point x E A is an exposed point

[5] of K if there exists an x' £ X' such that x'(x) > x'(y) whenever y E K,

y # x. Such a functional x' is, in turn, said to expose the set K at x. A point

x of A is further called a strongly exposed point [5] of K if there exists an

x' E X' for which (i) x'(x) > x'(y) whenever y E K,y ¥= x, and (ii) for every

net (x„) in K, x'(xn) -» x'(x) implies that x„ -» x. The functional x' is then said

to strongly expose K at x. The set of exposed points of K is denoted by exp K,

and, in case K is convex, the set of its extreme points is denoted by ext K.

If the functionals x' E X' which strongly expose a weakly compact convex

set K in X are dense in X', then the functionals x' E X' which expose K are

proved in Theorem 2 to be residual in X'; moreover, if each functional that

exposes K is strongly exposing, then they form a residual Gs set in X'. This

yields, in particular, the above theorem of B. Walsh.

For every A G &, let vA denote the restriction of v to A, viz. vA(E)

= v(A n E), E E &. In case of a finite-dimensional nonatomic measure v,

Husain and Tweddle [4] proved that every extreme point of vA(&) is of the

form v(A f~l E), where E E & and v(E) E ext v(&). If *<: & —> A is a measure

such that the exposed points of its range form a weakly closed set, we obtain
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in Theorem 8 an analogous result for exposed points.

The author is deeply indebted to Professor K. M. Garg for his valuable

guidance and help in the preparation of this paper.

2. Residuality of exposing functionals.   Given a weakly compact convex set

K in X, we define, for every x' G A",

Kx, = {x G K: x'(x) = max x'(K)),

and the map

pK: X' -* R,   pK(x') = diam Kx,       x' G A".

The author is grateful to the referee for an improvement in the proof of the

following lemma.

Lemma 1. For any weakly compact convex set K in A, the map pK is

continuous at every x' G A" which strongly exposes K.

Proof. Let x' G A' strongly expose A" at x. Then pK(x') = 0. Suppose that

pK is not continuous at x'. Then there exists e > 0, and a sequence {x'„) in X'

converging to x' for which pK(x'n) > e for each n. Thus there exist, for each n,

a„ and b„ in KXn such that ||a„ — bn\\ > e/2.

Since K is weakly compact, the sequence {a„} has a subnet (a,) which

converges weakly to some point a in K. Similarly, (bj) has a subnet (bj) which

converges weakly to some b G K. Now the set K' = {x'„;n > 1} U (x'} is

norm-compact, and, as K is bounded, the evaluation map from K X K' to R,

given by (y,y') -» y'(y), y G K, y' G K', is jointly continuous relative to the

weak topology on K and the norm topology on K. We thus have x'j(aj)

-> x'(a). If R = sup x'(K) and Rj = sup x'j(K) for every/, then obviously

Bj —* B. Since a, G Kx, for each/, xj-(o,-) = Bj, and so we have Xj(aj) —» B.

Thus we obtain x'(a) = lim x'(a) = B = x'(x). Since (a ) -* a weakly, we

have x'(aj) -* x'(a). As x' strongly exposes K at x, we obtain a = x and

hj - x\\ -* o.
By a similar argument, one obtains x'(b) = B, b = x and \\bj — x\\ -* 0, so

that ||ay — bj\\ —* 0, contrary to the choice of the tz„'s and bn's. Hence pK is

continuous at x'.

Remark. It is clear from the above proof that pK is upper semicontinuous

when K is norm-compact. It would be interesting to investigate weaker

hypotheses on K under which pK is upper semicontinuous.

Theorem 2. // the set of strongly exposing functionals of a weakly compact

convex set K in X is dense in X', then the set of its exposing functionals is residual

in A".

In case every exposing functional of K is further strongly exposing, then they

form a residual Gs set in A".

Proof. Let C denote the set of points of continuity of pK, and let X'e and

X's denote the sets of functionals x' G A' which expose or strongly expose K

respectively. Since A"^ is, by hypothesis, dense in A', and pK vanishes at every

point of X's pK is zero at every point where it is continuous. But then x' exposes
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K whenever pK(x') = 0. We thus have, with the help of Lemma 1, X's E C

c x'e.
Since the points of continuity of any real valued function form a Gs set, X'e

contains the dense Gs set C, and so X'e is residual in X'. In case X'e C X's, we

have X'e = C, whence the second part of the theorem.

In case v. & -» X is a measure, the set K = co v(&) is weakly compact by a

theorem of Bartle, Dunford and Schwartz [3]. Hence there exists, according to

Theorem 4 of Amir and Lindenstrauss [1], at least one x' E X' which exposes

K. For any other y' E X' it follows from Theorems 2 and 4 of [2] and

Rybakov [7] that all but countably many elements in the segment from x' to

y' expose K, and so X'e is dense in X'. But X'e C X's as it follows from the proof

of Theorem 5 of [2], and so we have

Corollary 3. If v is a measure with values in X, the exposing functionals of

its range form a residual Gg set in X'.

According to Theorems 2 and 4 of [2], an x' E X' exposes K if and only if

x' o v = v, and so the above corollary yields in turn

Corollary 4 (Walsh [9]). If v is a measure with values in X, the functionals

x' E X',for which x' ° v = v,form a residual Gs set in X'.

3. Exposed points of the range of a restriction of a measure.    If A and B are

two weakly compact convex sets in X, in analogy with the definition of extBA

in [4], we define expBA to be the set of those exposed points x of A for which

there exists some exposed point y of B such that x + y E exp(A + B).

Proposition 5. If A and B are two weakly compact convex sets in X, then

expBA is weakly dense in exp A.

Proof. By using Theorem 4 of Amir and Lindenstrauss [1] in place of the

Krein-Mil'man Theorem in the proof of Theorem 1 of [4], it may be verified

that expBA is weakly dense in ext A, and since cxpBA C exp A and exp A

E ext A, as is well known, it follows that expBA is weakly dense in exp A.

On using Corollary 7 of Troyanski [8] instead, the above proposition is

found to hold for the set of strongly exposed points as well.

Lemma 6. // v: & -* X is a measure, then the weak and norm topologies

coincide on the set of extreme points of the closed convex hull of v{@).

Proof. There exists a finite positive measure X on 6? such that v = X (see

[3]). For each (#> G L0O(X), its Bartle-Dunford-Schwartz integral [3] f<bdv

E X. Let T: LX(X) -» X be defined by T($) = f <bdv, <J> G L00(A), and let Tv

denote the restriction of T to the set P = {<p E L00(X): 0 < <b < IX -a.e.). It

follows from the Radon-Nikodym theorem that T is continuous relative to the

weak*-topology oiL^X),LX(X)) on L00(A) and the weak topology on X.

According to a theorem of Bartle, Dunford and Schwartz [3], the set

K = co v(&) is weakly compact, and so we have T„(P) = K (see, e.g., [2,

Lemma 1]).

We need to show that the weak topology on ext K is finer than the norm

topology. Let (x,) be a net in ext K converging weakly to an element x in

ext K. Then there exist, by Proposition 2 of [2], unique sets Et, E E &, such
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that T~x(xj) = (xe) f°r each ' an(i T~X(X) = {xe)> where \a denotes the

characteristic function of A G &. It may easily be verified that P is weak*-

compact, and since the net (xe) is contained in P, there exists a subnet (xe)

01 (Xe) converging to some <j> G P relative to the weak*-topology. As

Tv: (P,'w*) ->■ (K,w) is continuous, (Tv(xe)) -«* £(*), i.e. (x,) -"» Tv(<b), and

since (x;) -^ x, we have 7^(<>) = x = Tv(xE)> and so cb = X£ (by [2, Propo-

sition 2]). Now the weak*-topology coincides with the L,(A)-norm topology on

the set of characteristic functions, and so ||x£. - Xe\\\ ~* 0- On identifying &

with the above subset of L, (A), since v. & -* X is continuous relative to the

Lj(A)-norm topology on & and the norm topology on X, we have \\v(Ej)

- v(E)\\ ~* 0. Thus every weakly convergent net in ext K has a subnet that

converges in the norm. Hence the lemma.

Lemma 7.    If v: & —> X is a measure, then for every A G S. we have

[v(E n A): v(E) G exp v(&)} C exp vA(&)

G [v(E n A): v(E) G exp v(&)}~.

Proof. Let K = co v(&), Kx = co vA(&) and K2 = co vAC(&), where Ac

denotes the complement of A. According to [2, Theorem 4], we have

exp i>(&) = exp K and exp vA(6L) = exp Kx. It is easy to see that K = AT,

+ A"2, and that an x' G X' exposes K at v(E) if and only if x' exposes A^ at

p(.E n A) and AT2 at v(E n ^4C), whence we have exp^A"] = {^is n A): v(E)

G exp A"}. The lemma now follows from Proposition 5 and Lemma 6.

Theorem 8. If v: & -* X is a measure such that exp v(&) is weakly closed,

then for every A G & we have

exp vA(&) = [v(E n A): v(E) G exp v(&)}.

Proof. According to Lemma 7, it suffices to prove that the set on the right-

hand side is norm-closed. Let v(En) G exp v(&) for each n, and assume that

the sequence {v(En n A)} converges to x G X. As xe e P f°r each n and (P,

w*) is compact, there exists a subnet (xe„) oi" (xeJ and some cb G P such that

X£m-^ <?>. Since T„: (P,w*) ^> (K,w) is continuous, the net (Tv(xEm))

-^ Tp(cj>), i.e. (v(Em)) -*-> Tv(<b). As v(Em) G exp v(&) for each m and

exp v(&) is weakly closed, we have Tv(cb) G exp i>(&) (c ext AT), and so, by

Proposition 2 of [2] there exists a unique set is G & such that <#> = xe- But

then x£m -J!L-> Xe anc^ we obtain, as in the proof of Lemma 6, ||x£ — Xe\\\

-> 0, whence it follows that Hx£mrM — Xeha 111 ~* 0- Since p: 6E -» A" is
continuous, the net (K^m n ^0) converges to »»(£ D A). By hypothesis,

IIK^m n ^4) - x|| -* 0, and so x = v(E n ^). Since ?(£■) G exp j»((£), this

completes the proof.

Remark. When exp v(&) is not closed, the above theorem does not hold, in

general, even for a finite-dimensional measure. For, as proved by Rickert [6,

Theorem 1], there exists a nonatomic measure vx defined on the a-algebra of

Borel subsets of A = [0,1] whose range is the closed unit disk in R2. Let v2 be

the Lebesgue measure on the Borel subsets of B = [1,2] whose range is the
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segment from (0,0) to (1,0). Let 6Bbe the a-algebra of Borel subsets of [0,2], and

define the measure v: & -> R2 by v(E) = vx(E n A) + v2(E n B), E E &
The range of v is the convex hull of the two disks with radius unity and centers

(1,0) and (0,0). The point (0,1) is an exposed point of vA(&), and it may easily

be verified that (0,1) is not of the form v(E n A) for any exposed point v(E)

of the range of v. We do not know if Theorem 8 is true when exp v(&) is only

norm-closed.
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