PERTURBATIONS OF GROUPS OF AUTOMORPHISMS OF VON NEUMANN ALGEBRAS

M. REYNOLDS

ABSTRACT. We show that if two uniformly continuous representations of a connected abelian group as *-automorphisms of a von Neumann algebra are close in norm, then they are conjugate via a single automorphism close to the identity automorphism.

1. In [5] Kadison and Kastler consider von Neumann algebras \Re , \S acting on the same Hilbert space whose unit balls are close in norm and conjecture that such algebras are unitarily equivalent via a unitary close to the identity operator. This has subsequently been resolved in the affirmative for certain algebras by Christensen [1], [2]. Kadison and Ringrose show [6] that if α is a *-automorphism of a von Neumann algebra \Re for which $\|\alpha - \iota\| \le k < 2$, then α can be implemented by a unitary U in \Re with $\|U - I\| \le (2 - (4 - k^2)^{1/2})^{1/2}$. (ι denotes the identity automorphism of \Re and I is the identity operator in \Re .)

These results prompted us to pose the following question: Let \Re be a von Neumann algebra, G a group, and suppose α : $g \to \alpha_g$, β : $g \to \beta_g$ are representations of G as *-automorphisms of \Re . If $\sup_{g \in G} \|\alpha_g - \beta_g\| \le k$, for some sufficiently small k, does there exist a *-automorphism γ of \Re for which $\beta_g = \gamma \alpha_g \gamma^{-1}$ for every $g \in G$ and $\|\gamma - \iota\| \le f(k)$, where f is some increasing function of k? We give an affirmative answer when G is a connected abelian topological group and α , β are uniformly continuous representations.

2. For a von Neumann algebra \Re , we denote by \Re_* the predual of \Re , i.e. the space of all ultraweakly continuous linear functionals on \Re . $\mathcal{L}(\Re)$ will be the space of all bounded linear operators on \Re , and for an element γ of $\mathcal{L}(\Re)$, $\operatorname{sp}(\gamma)$ will denote the spectrum of γ in $\mathcal{L}(\Re)$. Recall that if γ is a *-automorphism of \Re , then $\operatorname{sp}(\gamma) \subseteq T$, where T is the set of complex numbers of modulus one. If $\alpha: g \to \alpha_g$ is a representation of a group G as *-automorphisms of \Re , let

$$\Re^{\alpha} = \{ A \in \Re: \alpha_{g}(A) = A \text{ for every } g \in G \}$$

and let \mathfrak{X}^{α} denote the centre of \mathfrak{R}^{α} . We say two representations α : $g \to \alpha_g$, β : $g \to \beta_g$ of G commute if $\alpha_g \beta_h = \beta_h \alpha_g$ for all $g, h \in G$. A representation α is uniformly continuous if $\|\alpha_g - \iota\| \to 0$ as $g \to e$ where e is the identity element of G. For subalgebras \mathfrak{A} , \mathfrak{B} of \mathfrak{R} we define as in [5],

Received by the editors March 4, 1975.

AMS (MOS) subject classifications (1970). Primary 46LXX, 46L10.

$$\|\mathfrak{A} - \mathfrak{B}\| = \sup\{d(A, \mathfrak{B}_1), d(B, \mathfrak{A}_1): A \in \mathfrak{A}_1, B \in \mathfrak{B}_1\},$$

where \mathfrak{A}_1 , \mathfrak{B}_1 are the unit balls of \mathfrak{A} , \mathfrak{B} respectively.

3. LEMMA. Let $\alpha: g \to \alpha_g$, $\beta: g \to \beta_g$ be commuting uniformly continuous representations of a connected abelian topological group G as *-automorphisms of a von Neumann algebra \Re . If $\|\alpha_g - \beta_g\| < 2$ for every $g \in G$, then $\alpha = \beta$.

PROOF. For $g \in G$, define $\gamma_g = \beta_g^{-1} \alpha_g$; then since α , β commute and G is abelian, $\gamma: g \to \gamma_g$ is a representation of G as *-automorphisms of \mathfrak{R} . Moreover,

$$\|\gamma_{\varrho} - \iota\| = \|\alpha_{\varrho} - \beta_{\varrho}\| \leqslant \|\alpha_{\varrho} - \iota\| + \|\beta_{\varrho} - \iota\|,$$

so γ is uniformly continuous and $\|\gamma_g - \iota\| < 2$ for every g in G. Hence $\gamma(G)$ is a connected commutative subset of $\mathfrak{L}(\mathfrak{R})$. Let \mathfrak{A} be a maximal commutative subalgebra of $\mathfrak{L}(\mathfrak{R})$ containing $\gamma(G)$ and let Φ denote the set of nonzero multiplicative linear functionals on \mathfrak{A} . The maximality of \mathfrak{A} implies $\mathrm{sp}(\gamma_g) = \{\varphi(\gamma_g): \varphi \in \Phi\}$ for every $g \in G$. Now each $\varphi \in \Phi$ is norm continuous so $\varphi(\gamma(G))$ is a connected subgroup of T, and hence either $\varphi(\gamma(G)) = \{1\}$ or $\varphi(\gamma(G)) = T$. We assert $\varphi(\gamma(G)) = \{1\}$. If not, $\varphi(\gamma(G)) = T$, so choosing g with $\varphi(\gamma_g) = -1$, we have $2 > \|\gamma_g - \iota\| \geqslant |\varphi(\gamma_g) - 1| = 2$, a contradiction. Therefore $\varphi(\gamma(G)) = \{1\}$ for every $\varphi \in \Phi$. Hence $\mathrm{sp}(\gamma_g) = \{1\}$, so $\gamma_g = \iota$ (see for example [3, Lemma 2.3.9]), and thus $\alpha_g = \beta_g$ for all g in G.

Theorem. Let \Re be a von Neumann algebra, G a connected abelian topological group, and suppose α : $g \to \alpha_g$, β : $g \to \beta_g$ are uniformly continuous representations of G as *-automorphisms of \Re . If $\sup_{g \in G} \|\alpha_g - \beta_g\| \le k \le 1/9$, then there exists an inner *-automorphism γ of \Re such that $\beta_g = \gamma \alpha_g \gamma^{-1}$ for every $g \in G$, and $\|\gamma - \iota\| \le 2^{7/2} k (1 + (1 - 16k^2)^{1/2})^{-1/2}$.

PROOF. We show first that $\|\Re^{\alpha} - \Re^{\beta}\| \leq k$. Since *-automorphisms of von Neumann algebras are ultraweakly continuous, \Re^{α} and \Re^{β} are ultraweakly closed *-subalgebras of \Re , and because G is abelian, there exists an invariant mean μ on the space of all bounded complex valued functions on G [4, Theorem 1.2.1]. For $A \in (\Re^{\alpha})_1$, the function $g \to \varphi(\beta_g(A))$ is bounded for each φ in \Re_* , and so we may define B to be the continuous linear functional on \Re_* given by $\varphi \to \int \varphi(\beta_g(A)) \, d\mu(g)$. Hence $B \in \Re$, $\|B\| \leq 1$, and for $h \in G$, $\varphi \in \Re_*$, Hence $B \in \Re$, $\|B\| \leq 1$, and for $h \in G$, $\varphi \in \Re_*$,

$$\langle \beta_h(B), \varphi \rangle = \varphi(\beta_h(B)) = \langle B, \varphi_o \beta_h \rangle = \int \varphi(\beta_{hg}(A)) \, d\mu(g)$$

= $\int \varphi(\beta_g(A)) \, d\mu(g)$, since μ is invariant, = $\langle B, \varphi \rangle$.

Therefore $B \in (\mathfrak{R}^{\beta})_1$ and for $\varphi \in \mathfrak{R}_*$ with $\|\varphi\| \leq 1$,

$$|\varphi(A) - \varphi(B)| = \left| \int \varphi(\alpha_g(A)) \, d\mu(g) - \int \varphi(\beta_g(A)) \, d\mu(g) \right|$$

$$\leq \int |\varphi(\alpha_g(A) - \beta_g(A))| \, d\mu(g) \leq k.$$

Thus $||A - B|| \le k$, and similarly given $B \in (\Re^{\beta})_1$, we can find $A \in (\Re^{\alpha})_1$

with $||A - B|| \le k$. This implies $||\Re^{\alpha} - \Re^{\beta}|| \le k$.

Applying [1, Lemma 2.2 and Theorem 3.2] we obtain a unitary W in \Re with $\|W - I\| \le 2^{5/2} k (1 + (1 - 16k^2)^{1/2})^{-1/2}$ such that $W \mathfrak{T}^{\alpha} W^* = \mathfrak{T}^{\beta}$. By [7, Theorem 1], there exists a unitary representation $g \to U_g$ of G into \Re such that U_g implements α_g and $\|U_g - I\| \to 0$ as $g \to e$. Since G is abelian, we have for $g, h \in G$,

$$\alpha_h(U_g) = U_h U_g U_h^* = U_g,$$

and therefore each U_g belongs to \Re^{α} . Moreover, if $A \in \Re^{\alpha}$, then $U_g A U_g^* = A$, so $U_g \in \Re^{\alpha}$ for every $g \in G$. If θ_g , γ are the automorphisms of \Re implemented by $WU_g W^*$ and W, respectively, then $\theta \colon g \to \theta_g$ is a uniformly continuous representation of G satisfying $\theta_g = \gamma \alpha_g \gamma^{-1}$ for every $g \in G$. Furthermore,

$$\|\theta_g - \beta_g\| \le \|\theta_g - \alpha_g\| + \|\alpha_g - \beta_g\| \le 2\|\gamma - \iota\| + k$$

$$\le 4\|W - I\| + k \le 2^{9/2}k(1 + (1 - 16k^2)^{1/2})^{-1/2} + k$$

$$< 2, \text{ since } k \le 1/9.$$

Hence by the Lemma, $\theta = \beta$, and therefore $\beta_g = \gamma \alpha_g \gamma^{-1}$ for every g in G, with $\|\gamma - \iota\| \leq 2^{7/2} k (1 + (1 - 16k^2)^{1/2})^{-1/2}$.

4. Acknowledgements. It is a pleasure to record my thanks to my research supervisor, Professor J. R. Ringrose, for his guidance during the preparation of this paper. I also acknowledge the receipt of a research studentship from the Science Research Council.

REFERENCES

- 1. E. Christensen, *Perturbations of type I von Neumann algebras*, University of Copenhagen preprint no. 12, 1973.
 - 2. ——, Perturbations of operator algebras, University of Oslo preprint no. 14, 1974.
- 3. A. Connes, Une classification des facteurs de type III, Ann. Sci. École Norm. Sup. (4) 6 (1973), 133-252. MR 49 #5865.
- 4. F. P. Greenleaf, Invariant means on topological groups and their applications, Van Nostrand Math. Studies, no. 16, Van Nostrand Reinhold, New York, 1969. MR 40 #4776.
- 5. R. V. Kadison and D. Kastler, Perturbations of von Neumann algebras. I Stability of type, Amer. J. Math. 94 (1972), 38-54. MR 45 #5772.
- 6. R. V. Kadison and J. R. Ringrose, *Derivations and automorphisms of operator algebras*, Comm. Math. Phys. 4 (1967), 32-63. MR 34 #6552.
- 7. J. Moffat, Connected topological groups acting on von Neumann algebras, J. London Math. Soc. 9 (1975), 411-417.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF NEWCASTLE UPON TYNE, NEWCASTLE UPON TYNE NE1 7RR, ENGLAND

Current address: 8, Percy Terrace, St. Johns, Tunbridge Wells, Kent, England