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Abstract. We show that if two uniformly continuous representations of a

connected abelian group as »-automorphisms of a von Neumann algebra are

close in norm, then they are conjugate via a single automorphism close to the

identity automorphism.

1. In [5] Kadison and Kastler consider von Neumann algebras % S acting

on the same Hilbert space whose unit balls are close in norm and conjecture

that such algebras are unitarily equivalent via a unitary close to the identity

operator. This has subsequently been resolved in the affirmative for certain

algebras by Christensen [1], [2]. Kadison and Ringrose show [6] that if a is a

♦-automorphism of a von Neumann algebra 51 for which \\a — i\\ < k < 2,

then a can be implemented by a unitary (/ in 51 with ||t/—/|| <

(2 — (4 — k2)' )' . (i denotes the identity automorphism of 51 and I is the

identity operator in 5L)

These results prompted us to pose the following question: Let "31 be a von

Neumann algebra, G a group, and suppose a: g —» ag, B: g —> Bg are repre-

sentations of G as *-automorphisms of 5L If supgeC||ag - B \\ < k, for some

sufficiently small k, does there exist a *-automorphism y of 51 for which

B = ya y~x for every gEG and ||y — t|| < f(k), where/is some increasing

function of ki We give an affirmative answer when G is a connected abelian

topological group and a, B are uniformly continuous representations.

2. For a von Neumann algebra % we denote by 51* the predual of % i.e.

the space of all ultra weakly continuous linear functionals on <3L £(51) will be

the space of all bounded linear operators on % and for an element y of £(51),

sp(y) w'H denote the spectrum of y in £(51). Recall that if y is a *-

automorphism of 51, then sp(y) C T, where T is the set of complex numbers

of modulus one. If a: g —> ag is a representation of a group G as *-

automorphisms of % let

«Rf = {A E <&: ag(A) = A for every gEG)

and let %a denote the centre of *$?. We say two representations a: g -» ag, B:

g -* Bg of G commute if otgBh = Bhag for all g, h £ G. A representation a is

uniformly continuous if \\ag - t\\ —> 0 as g —> e where e is the identity element

of G. For subalgebras 2f, $ of 51 we define as in [5],
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||2l - <$|| = sup{d(A,%),d(B,Wx): A G%X,B G %},

where 2l1; % are the unit balls of 21, <$ respectively.

3. Lemma. Let a: g —» ag, R: g -* Bg be commuting uniformly continuous

representations of a connected abelian topological group G as *-automorphisms of

a von Neumann algebra ft. // \\ag - B \\ < 2 for every g G G, then a = R.

Proof. For g G G, define yg = B~x ag; then since a, R commute and G is

abelian, y: g —> yg is a representation of G as *-automorphisms of ft More-

over,

||yg-t|| = \\ag-Rg\\ < \\ag - t\\ + \\Rg - t\\,

so y is uniformly continuous and ||y^ — t|| < 2 for every g in G. Hence y(G)

is a connected commutative subset of £(ft). Let 91 be a maximal commutative

subalgebra of £(ft) containing y(G) and let $ denote the set of nonzero

multiplicative linear functionals on 31. The maximality of 21 implies sp(y )

= {tp(yg): ip£$) for every g G G. Now each cp G $ is norm continuous so

<p(y(G)) is a connected subgroup of T, and hence either cp(y(G)) = {1} or

cp(y(G)) = T. We assert m(y(G)) = (1). If not, <p(y(G)) = T, so choosing g

with <p(yg) = -1, we have 2 > ||y - t|| > |<p(yg) - 1| = 2, a contradiction.

Therefore <p(y(G)) = (1} for every m e $. Hence sp(yg) = {1}, so yg = t (see

for example [3, Lemma 2.3.9]), and thus ag = Rg for all g in G.

Theorem. Let '51 be a von Neumann algebra, G a connected abelian topological

group, and suppose a: g —* ag, B: g —> Rg are uniformly continuous representa-

tions of G as *-automorphisms of$L If sup eG\\ag — B \\ < A < 1/9, then there

exists an inner *-automorphism y of 91 such that B = ya y~x for every g G G,

and \\y - t\\ < 27/2A(l + (1 - I6k2)x/2yx/2.

Proof. We show first that ||Sla — <iRP\\ < A. Since *-automorphisms of von

Neumann algebras are ultraweakly continuous, W and ^P are ultraweakly

closed *-subalgebras of % and because G is abelian, there exists an invariant

mean ju. on the space of all bounded complex valued functions on G [4,

Theorem 1.2.1]. For A G (9S')X, the function g -* cp(Bg(A)) is bounded for

each cp in %^, and so we may define B to be the continuous linear functional

on %, given by <p -> f cp(Bg(A))dix(g). Hence B G % \\B\\ < 1, and for

h G G,cp G 6l^, Hence B G % \\B\\ < 1, and for h G G, <p e 91*,

(Rh(B),cpy = <p(Bh(B)) = <B,q>0Bhy=fv(Bhg(A))d^g)

= J cp(Rg(A))dn(g), since /x is invariant, = <i5,<p).

Therefore B G (^\ and for <p G ft* with \\<p\\ < 1,

\cp(A) - cp(B)\ = \J cp(ag(A))d,j.(g) - f cp(Rg(A))dp(g)\

< f \<p(ag(A) - Bg(A))[dp(g) < A.

Thus ||^ - B\\ < A, and similarly given B £ (ft8)], we can find A G (ft").
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with \\A - B\\ < k. This implies ||5T - <&P\\ < k.
Applying [1, Lemma 2.2 and Theorem 3.2] we obtain a unitary Win 51 with

\\W- I\\ < 25/2/v(l + (1 - I6k2)x/2)~X/2 such that W%aW* = 2*. By [7,

Theorem 1], there exists a unitary representation g -* Ug of G into 51 such that

Ug implements ag and \\Ug — I\\ -* 0 as g -> e. Since G is abelian, we have for

g, h E G,

ah(Ug)= UhUgU* = Ug,

and therefore each Ug belongs to 51". Moreover, if A E 5T, then UgA Ug* = A,

so Ug E %a for every g E G. If 9g, y are the automorphisms of 51 implemented

by WUg W* and W, respectively, then 9: g -> 9g is a uniformly continuous

representation of G satisfying 9g = yagy_1 for every gEG. Furthermore,

\\9g -Bg\\< \\9g - a,|| + ||ag - /jg|| < 2||y - <|| + k

<4\\W-I\\+k< 29^2k(l + (1 - I6k2f2yx/2 + k

< 2,    since A: < 1/9.

Hence by the Lemma, 9 = B, and therefore /? = yagY_1 for every g in G,

with ||y - (|| < 2J/2k(l + (1 - 16£2)1/2r1/2.
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