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POINT-COUNTABILITY AND COMPACTNESS

H. H. WICKE AND J. M. WORRELL, JR.

Abstract. We prove that if a countably compact space X has an open

cover % = U{ %,:«<"} such that each x G X is in at least one but not

more than countably many elements of some 'Y„, then some finite subcol-

lection of % covers X. We apply the theorem in proving several metrization

theorems for countably compact spaces and discuss consequences of weak

Sfl-refinability, a concept implicit in the statement of the theorem.

1. Introduction. The purpose of this article is to supply a proof of the

following theorem, which was stated (for the Tx case and in different

terminology) as Theorem (iv) in [19],' and to present some applications.

1.1. Theorem. Suppose X is a countably compact topological space and S>[  is

the union of a countable collection {LAn : n < to} of collections of open subsets of

X such that each x G X is in at least one element but not in more than

countably many elements of some c\n. Then some finite subcollection of $1

covers X.

Theorem (iv) was stated for comparison with Theorems (i)-(iii) of [19]

which concerned #-refinability, a concept introduced there. A proof of (iv)

was not given since the article's major concern was with other topics.

The theorem has an intrinsic interest which is heightened by the relation it

bears to some questions concerning the properties of weak #-refinability [5]

and quasi-developability [4], studies of which appeared after the publication

of [19]. In particular, the theorem gives an affirmative answer to the question

as to whether countably compact spaces which are weakly 0-refinable are

compact (listed as an open problem in [11]). This result, together with Bennett

and Lutzer's result that quasi-developable spaces are weakly #-refinable [5]

and Bennett's theorem that compact quasi-developable Hausdorff spaces are

metrizable [4], yields that all Hausdorff countably compact quasi-developable

spaces are metrizable, answering a question in [4].

Implicit in the statement of Theorem 1.1 is the covering property of weak

<5f?-refinability (Definition 2.1), which carries further the generalization of

covering properties which imply compactness in the presence of countable

compactness.
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For these reasons, we feel that it is appropriate to publish a proof of the

theorem. We are indebted to several mathematicians for requesting that we

do so.
Notation and terminology. Our set-theoretic usage corresponds to that of [9].

Thus co denotes the first infinite ordinal and m < co means that m is a positive

integer. If A is a set, \A | denotes its cardinal number. A space X is called

countably compact (in accord with customary usage) if and only if every

countable open covering of X has a finite subcollection which covers X. In

our proof we use the consequence of this that every infinite set A has an

co-accumulation point, i.e., a point x such that every open set containing x

contains infinitely many points of A. If T is a collection of sets we define

orderi'Y, x) by |( V E "V: x E V)\. We use T* to denote U °V.

Proof of 1.1. We use the notation of 1.1. For each n < co, let Cn = {x E

X: 0 < orderCVM, x) < co). Let C(^l) denote the collection of all subsets of

X that are covered by a countable subcollection of °?l . If X E C(9l), the

theorem will follow. If X E C(9l), let n0 denote the first m < co such that

CmE C(%.) and let E0 = X \ ?ft * where 911 C 3l is a countable cover of

Cj for ally < n0. Suppose k < co and Ej and aj, are such that for ally < k: (1)

Ej is a closed set in X, (2) n} is the first m < co such that £■ fl CM (2 C(9l),

(3) Ej+X C Ej (if F,+ , is defined), (4) E} n Cm = 0 for all m < «,.. Suppose

"V C % is countable and covers B = Ek\ T* By the proof of Theorem 18

of [10, p. 8], there exists Af C {Ek n C„t) \ °V* such that (£t n C„t) \ T*
C U {V E T : V n M ¥^ 0) and no element of T„t contains two points

of M. Thus, since M E Ek\ CV* E T„* and F^ is closed, M has no co-

accumulation points, so M is finite. This implies that Ek n C £ F(%), a

contradiction. Hence fi £ (C(%)) and there exists m < co such that fl n

Cm 0 C(%). Let nk + x be the first such m. Let 1 C % be a countable cover

of B n C, for all j < nk+x. Let Ek+X = B \ •¥*. Then (l)-(4) hold for

y = /c + 1. Hence sequences (F^: /c < co> and <«ft: k < cc) exist satisfying

(IH4) for all j < co. By (4), fl {Ek: k < co} = 0, which contradicts the

countable compactness of A'. Thus X E C(%).

2. Applications. To state the applications we need several definitions. Let X

be a space and suppose <3cli is a collection of subsets of X of the form (J {% :

/j < co}. Consider these conditions on ^5 :

(1) For each x E X, there is an n < co such that 0 < orderC^V,,, x) < co.

(2) For each x E X, there is an n < co such that 0 < order(l\n, x) < co.

(3) For each n < co, T„ covers X.

2.1. Definition. Suppose A" is a space and every open covering of X has an

open refinement % satisfying (1). Then X is called weakly 89-refinable. If, in

addition to (1), <¥ satisfies (3), then X is called 89-refinable [3]. If every open

covering of X has an open refinement % satisfying (2), X is called weakly

0-refinable [5]. If, in addition to (2), <¥ satisfies (3), then X is called

0-refinable [19].
2.2. Definition. A collection % is called o-distributively point-countable

provided it is a collection of the form U(%: « < co} such that for each

x E Uf, there is an n < co such that 0 < order(T„, x) < co.

The following diagram gives inclusion relationships among the covering
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properties of Definition 2.1 and other classically studied properties. An arrow

from (2 to <3 means that the class of spaces having property & is a subclass

of the class of spaces having % . None of the arrows may be reversed.

paracompact => metacompact =>  0-refinable =>  weakly 0-refinable

I Jj J, I
paraLindelof => metaLindelof => §#-refinable => weakly 80-refinable.

2.3. Theorem. Every closed and countably compact subset of a weakly

89-refinable space is compact.

Proof. Immediate from Theorem 1.1 and the definitions involved.

2.4. Corollary. // a countably compact space has any of the properties listed

in the diagram, then it is compact.

For the paracompact case this is due to Dieudonne [8], for metacompact

spaces to Arens and Dugundji [2], for metaLindelof spaces to Aquaro [1], for

t9-refinable spaces to Worrell and Wicke [19], and for <50-refinable spaces to

Aull [3].

In the following theorems we use concepts not defined here. In the list

below, the reference immediately following a concept contains a definition of

the concept (the reference given is not necessarily the original source):

M-space, p-space, Rb-space, fic-space [12]; wA-space, Burke's p-space criterion

[6]; quasi-complete [7]; 9-base [19]; Gs-diagonal, quasi-developable [4]; primi-

tive base, primitive set of interior condensation, primitive structure of (count-

ably) compact type [17].

2.5. Theorem. A Hausdorff M-space is a paracompact p-space if and only if

it is weakly 89-refinable.

Proof. Direct from the definitions and 2.3.

2.6. Theorem. Every weakly 89-refinable regular T0 wA-space satisfies

Burke's p-space criterion.

Proof. This is a direct consequence of Theorem 1.4 of [6].

2.7. Theorem. In a weakly 89-refinable regular space X the following are

equivalent:

(a) X satisfies Burke's criterion.

(b) X is a quasi-complete space.

2.8. Theorem. // a Bc-space is not a Rb-space, then it is not locally weakly

89-refinable.

2.9. Theorem. If a space having a primitive structure of countably compact

type does not have a primitive structure of compact type, then it is not locally

weakly 89-refinable.

Theorems 2.8 and 2.9 are consequences of 2.3 and the definitions involved.

Theorem 2.7 may be proved analogously to Theorem 1.4 of [6].

2.10. Theorem. Suppose X is a countably compact Hausdorff space. Then the

following are equivalent:
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(a) A is compact metric.

(b) X  is quasi-developable.

(c) A is weakly 89-refinable and has a Gs-diagonal.

(d) X is weakly 89-refinable and its diagonal is locally a primitive set of

interior condensation.

(e) X can be covered by a o-distributively point-countable collection of open

sets each of which is weakly 89-refinable and has a primitive base.

(f) X can be covered by a o-distributively point-countable collection of open

sets each of which is quasi-developable (equivalently, has a 9-base).

Proof. That (a) —> (b) —> (f) is easily verified. By [ 5, Proposition 7] and [16,

Theorem 2.4], (f) —> (e). If (e) holds, Theorem 1.1 implies that A is covered by

a finite set of open weakly tSf?-refinable sets. Thus A is weakly 5^-refinable

and is therefore compact. Since having a primitive base locally implies having

a primitive base (this is noted in [16]; it is a consequence of a general lemma

concerning open primitive sequences [15]), A is compact and has a primitive

base. Hence A is metrizable [14], so (e) —> (a). Clearly (a) —> (c) —► (d). If A

satisfies (d), then its diagonal is a primitive set of interior condensation (see

remark just above concerning [15]). By 2.3, X is compact. Hence the diagonal

is a set of interior condensation by the proof of Theorem 5.1 of [17] and thus

A is metrizable by [13]. Hence (d) —> (a), and the proof is complete.

2.11. Remark. Weak S#-refinability is an abstraction of f?-refinability in the

presence of which countable compactness implies compactness. An abstrac-

tion of another sort which does not have this property is discussed in [20] as

property A. Every regular /?c-space having A is quasi-complete and every

regular Bb-space having A is a p-space in the sense of [6]. Thus with Theorem

2.8 we have that regular weakly 6"#-refinable /?c-spaces having A are p-spaces

in the sense of [6]. On the other hand, there are countably compact Tx

collectionwise normal p-spaces having A which are not weakly Sf?-refinable

[20], there are Tychonoff weakly #-refinable #fc-spaces which are not p-spaces

[18], and the space of countable ordinals with the order topology is a

countably compact p-space which does not have A and is not weakly

8#-refinable. Thus neither abstraction solves the problem of characterizing

nontrivially those Tychonoff /^-spaces which are p-spaces. In the case of

essentially Tx spaces having bases of countable order property A is equivalent

to f?-refinability.
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