ON PURE STATES OF C*-SUBALGEBRAS ## JOEL ANDERSON In [1, 2.12.21, p. 58] the following question is raised. Let $\mathscr C$ be a C^* -algebra, $\mathscr B$ a C^* -subalgebra of $\mathscr C$ and q a nonzero positive element of $\mathscr C$. Does there exist a state f on $\mathscr C$ such that the restriction of f to $\mathscr B$ is a pure state and f(q) > 0? The question was answered in the negative in [2]. Our purpose in this note is to present another proof of this fact. PROPOSITION. Let \mathfrak{A} be a C^* -algebra and let q, a and s be elements of \mathfrak{A} such that q is nonzero and positive, a is selfadjoint, and q = as - sa. Let \mathfrak{B} be an abelian C^* -subalgebra of \mathfrak{A} which contains a and the identity e. If f is a state on \mathfrak{A} such that the restriction of f to \mathfrak{B} is a pure state, then f(q) = 0. PROOF. Since f is a pure state on the commutative C^* -algebra \mathcal{B} , f is multiplicative on \mathcal{B} . Let $f(a) = \lambda$. Then by the Cauchy-Schwartz inequality $$|f(as) - f(a)f(s)|^2 = |f((a - \lambda e)s)|^2 \le f((a - \lambda e)^2)f(s^*s) = 0,$$ and similarly, f(sa) = f(a)f(s). Hence, f(q) = f(as - sa) = 0. If s is the unilateral shift on l^2 $(s(\{\lambda_1, \lambda_2, \dots\}) = \{0, \lambda_1, \lambda_2, \dots\})$, then $s^*s - ss^* = q$ is the projection of l^2 onto the space of sequences of the form $\{\lambda_1, 0, 0, \dots\}$. If $a = s + s^*$, then q = as - sa, so q, a and s satisfy the hypotheses of the proposition. Hence, we may take \mathcal{C} to be the C^* -algebra generated by s and \mathcal{C} to be the C^* -algebra generated by a and a. ## REFERENCES - 1. J. Dixmier, Les C*-algèbres et leur représentations, Cahiers Scientifiques, fasc. 29, Gauthier-Villars, Paris, 1964. MR 30 #1404. - 2. S. Sakai, On pure states of C*-algebras, Proc. Amer. Math. Soc. 17 (1966), 86-87. MR 32 #6249. DEPARTMENT OF MATHEMATICS, CALIFORNIA INSTITUTE OF TECHNOLOGY, PASADENA, CALIFORNIA 91125 Received by the editors September 10, 1975. AMS (MOS) subject classifications (1970). Primary 46L05. Key words and phrases. Pure states, C*-algebras.