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Abstract. The purpose of this paper is to prove that if p is a point of a

complex Banach space H at which the nonlinear transformation T on H is

locally Lipschitzian, then the local resolvent set of T at p is open.

Denote by H a complex Banach space with nondegenerate point-set S and

norm ||-|| and by p a point of S. Denote by / the identity transformation on H

and by T a not necessarily linear transformation from a subset D(T) of S into

S. If D(T) = S and Tis bounded and linear, then the resolvent set p(T) of T

is open [1, pp. 86-89]. Since in this case the local resolvent set pp(T) of T atp

[2, pp. 212, 213] is p(T), this means that pp(T) is open. In [2, Theorem 2, pp.

213-215] the openness of pp(T) is extended to the case where T is not

necessarily linear but continuously Frechet differentiable on an open set

containing p and H is finite-dimensional. The following theorem establishes

the fact that neither the differentiability of T nor the finite dimensionality of

H is necessary to the openness of pp(T).

Theorem. If T is locally Lipschitzian at p, then pp(T) is open.

Proof. Denote by a a member of pp(T) and by (8a,ea) a positive-number

pair such that [2, pp. 212, 213]

(1) ai - Tis 1-1 on the ball Rp(8a) with centerp and radius 8a;

(2) the ball RiaI^T)p(ea) g (ai - T)(Rp(Sa));

(3) (ai - T\R (S))~x is Lipschitzian on R{aI_T)p(ea) {T\RtSa) is the restric-

tion of Tto Rp(8a)).

Properties (l)-(3) permit us to denote by (r, M) a positive-number pair such

that ||(a/ - T)x - (ai - T)y\\ ^ M\\x - y\\ whenever (x,y) g Rp(r). Let A

= ai — T\R tSay and denote by |^4_1| the least nonnegative number B such

that ||^_1x - ^-1y|| g B||x - y|| whenever fx,y) g RAp(ea). Finally, let

c = mm{ll(2\A-x\),M,ta/3,0-al\\A-x\(2 + 8a)],r/[\A-x\(2 + r)]},

and suppose that b is a complex number such that \a — b\ < c. The remainder

of the proof will be devoted to showing that b is in pp(T).

Let 8b = min{r,5fl) and eb = min{ea/2,c}. If each of x andy is in Rp(8b),

then
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||(W - T)x - (bi - T)y\\

= \\bx — Tx + ax - ax + ay - ay — by + Ty\\

= \\(al - T)x - (al - T)y - (a - b)(x - y)\\

^ \\(al - T)x - (al - T)y\\ - \a - b\\\x - y\\

g (M - \a - b\)\\x - y\\    since 8b ^ r.

Since \a — b\ < c g M, we have that M - \a - b\ > 0. Thus bi — Tis 1-1 on

Rp(8b) and (bi - T\R ,s ))_1 is Lipschitzian on (bi - T)(Rp(8b)). It remains

to be shown that R(bI'-r)/eb) £ (bI ~ T)(Rp(8b)).

Denote by y a point of RibI_T\p(eb). To show thaty is in (bi — T)(Rp(8b)),

we shall prove that the restriction of the transformation A~~x((a - b)l + y)

to Rp(8b) has a fixed point. The technique used is successive approximation.

Define a sequence u as follows. Let w0 = p. Then

||(a - b)u0 + y - Ap\\ = ||(a - b)p + y - (al - T)p\\

= \\y - (bi - T)p\\

< eb < ea    by choice of eb.

Thus (a - b)u0 +y is in RAp(ea). Since RAp(ea) Q A(Rp(8a)) by (2), let «,

= ^  ' ((a - %0 + y). Thus

||u, - «ol| = \\A~x((a - b)u0 +y) - A~xAp\\

= \\A'x((a-b)p+y)-A-xAp\\

S \A-x\\\(a-b)p+y-Ap\\

< |^_1|£6 = \A~l \c   by choice of eb.

Furthermore,

||(a - b)ux +y- Ap\\ = \\(a - b)ux -(a- b)u0 + (a - b)u0 +y- Ap\\

£ \a - b\ \\ux - MqII + \\(a ~ b)u0 + y - Ap\\

< \a - b\ \A~X \c + eb < \A~X \c2 + c.

By definition of c we have that |^4_1|c ^ 1/2, so \A~ \c + c S= (3/2)c

Si (3/2)(ea/3) < ta. Thus (a - b)ux + y is in RAP(ea), so denote by w2 the

points-1 ((a - b)ux + y). Therefore

\\u2 - ux || = M-'((a - fc)M, + y) - A~x((a - b)u0 + y)||

=i l^-'Ha-ftim-Moll

< fl/T1 |c)2    since \a - b\ < c and ||w, - u0 \\ < \A~X \c.

This implies the following:

||w2 - P\\ ^ \\u2 - ux || + Ht/, - p\\ < fl^T1 |c)2 + \A~X \c.
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Finally, we have

||(a - b)u2 +y- Ap\\ = ||(a - b)u2 -(a- b)ux + (a - b)ux +y- Ap\\

s |« - 6| ||M2 - "i II + IK« - bX +y~ M\

<c(M-'k)2 + c 2 {\A-Xvy
i=0

= c2  (\A-X\c)'.
(=0

For the inductive step, suppose that m is an integer not less than 2 and that

u0, «i , ..., um has the following properties:

(4) if k is an integer in [l,m], then

K - «k-ill < {\A~x\c)k   and    \\uk-p\\ < £ (l^k)';
1 = 1

(5) if k is an integer in [0,w], then

\\(a - b)uk + y - Ap\\ <c 2 (I^V;
i=0

(6) u0 = p   and    uk = A~x((a — b)uk_x + y)

for each integer k in [l,m\.

Since \A~X \c ^ 1/2, we have that c 2,10 (\A'X lc)' = 2c = 2(ea/3) < efl.

Thus (a - 6)wm + y is in RAp(ea), which is a subset of the domain of A~x by

(2); so let um+x = A~x((a - b)um + y). Then

ll«m+l  - "mil   =   M~'((« - *)«m + .v) ~ A~X ((a - b)um_x  + y)\\

g \A-x\\a-b\\\um-um_x\\

<\A-x\c(\A-x\c)m    by (4)

= (\A-X\c)m+X.

In addition,

||«m+,   -p||   ^   ||«w+,   - Mm||   +   ||wm -p||

, m

<{\a-x\cT+x+ 2 (M-'k)'
/=i

by the preceding inequality and (4)

m+\

= 2 {\a-x\cY.
i=i

Finally,

||(a - %„+, + y - ^p|| S |a - b\ \\um+x - um || + ||(a - 6)wm + y - /lp||

<c(M-'|c)m+1 + c 2 (\A-X\cy
1=0

m+1

= c 2 (\A-X\cy.
/=0
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This completes the inductive step and defines a sequence u with the

following properties:

(7) if n is a positive integer, then

Ik-^-llKd^lc)"    and    \\un-p\\<i(\A-x\cy;
1=1

(8) if n is a nonnegative integer, then

\\(a - b)un + y - Ap\\ <c £ (j/r'k)';
,=o

(9) u0 = p    and    un = A~x((a - b)un_x + y)

for each positive integer n.

Since \A~X \c g 1/2, we know that {2,"=o (M_l W)T=o is convergent and,

hence, u is Cauchy. Since H is complete, denote by x the sequential limit of u.

To show that x is in Rp(8b) and (6/ — T)x = y, let us first prove that

(a — b)x + y is in RAp(ea). If d > 0 and f is a positive integer such that

||x — u, || < rf/c, we see that

||(a - b)x + y - Ap\\ g\a-b\ \\x - ut || + ||(a - b)u, + y - yj/>ll

<c(rf/c) + c 2 (\A-X\c)1   by (8)
,=o

< d+ 2c

^ d + 2(eJ3)     by the choice of c.

Thus \\(a — b)x + y — Ap\\ S= 2(ea/3)  < ea. This means that, since /I-1 is

continuous by (3), we have

x =   lim un =  lim A~x((a - b)un_x + y)
n—>oo „—*oo

= /T1 [ lim ((a - b)un_x + y)] = A~x \(a - b) lim un_x + y]
Ln—>oo J L n—»oo -I

= /I"1 ((a - 6)x +y).

Therefore   Ax = (a — b)x + y,   so    ax — Tx = Ax = (a — 6)x + y   and

(W - T)x = y.

To complete the proof it must be shown that x is in Rp(8b). Since x is the

sequential limit of u, we know by (7) that ||x - p\\ si 2,°^i (M_1 W, which is

\A~X \c/(l - \A~X \c) by the fact that \A~X \c < 1. The fact that

c^8j[\A-x\(2 + 8a)]

implies   that   \A~x\c/(l - \A~x\c)    g    8a/2.   Similarly,  the  choice   of   c

to be not greater than r/[|^l_11(2 + r)\ means that

\\x-p\\ S \A-x\c/(\-\A-x\c)^r/2.

Thus

\\x-p\\ ^ min{8a/2,r/2) < min{5a,r} = 8b,
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so x is in Rp(8b) andy is in (bl — T)(Rp(8b)). This completes the proof.

An example of the phenomenon described by the Theorem is the transfor-

mation /* on the complex numbers, which maps each complex number onto

its conjugate. /* is Lipschitzian, hence locally Lipschitzian at each complex

number. The local resolvent set of I* at 0-indeed at any complex number-is

the complement in the complex numbers of the unit circle.

The Theorem reveals a further similarity between the global spectrum of a

bounded linear transformation and the local spectrum [2, pp. 212, 213] of

certain nonlinear transformations. In doing so it heightens one's hope that

there is a suitable local analog for nonlinear transformations to the spectral

representation theory for bounded linear ones. One of the next questions to be

answered in attempting to discover such a theory seems to be the following:

Does a locally Lipschitzian transformation (or a continuously differentiable

transformation on a non-finite-dimensional space) have a local spectrum? It is

my feeling that the answer is affirmative.
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