THE LOCAL RESOLVENT SET OF A LOCALLY LIPSCHITZIAN TRANSFORMATION IS OPEN

E. LEE MAY, JR.

Abstract

The purpose of this paper is to prove that if p is a point of a complex Banach space H at which the nonlinear transformation T on H is locally Lipschitzian, then the local resolvent set of T at p is open.

Denote by H a complex Banach space with nondegenerate point-set S and norm $\|\cdot\|$ and by p a point of S. Denote by I the identity transformation on H and by T a not necessarily linear transformation from a subset $D(T)$ of S into S. If $D(T)=S$ and T is bounded and linear, then the resolvent set $\rho(T)$ of T is open [1, pp. 86-89]. Since in this case the local resolvent set $\rho_{p}(T)$ of T at p [2, pp. 212, 213] is $\rho(T)$, this means that $\rho_{p}(T)$ is open. In [2, Theorem 2, pp. 213-215] the openness of $\rho_{p}(T)$ is extended to the case where T is not necessarily linear but continuously Fréchet differentiable on an open set containing p and H is finite-dimensional. The following theorem establishes the fact that neither the differentiability of T nor the finite dimensionality of H is necessary to the openness of $\rho_{p}(T)$.

Theorem. If T is locally Lipschitzian at p, then $\rho_{p}(T)$ is open.
Proof. Denote by a a member of $\rho_{p}(T)$ and by $\left(\delta_{a}, \varepsilon_{a}\right)$ a positive-number pair such that [2, pp. 212, 213]
(1) $a I-T$ is $1-1$ on the ball $R_{p}\left(\delta_{a}\right)$ with center p and radius δ_{a};
(2) the ball $R_{(a I-T) p}\left(\varepsilon_{a}\right) \cong(a I-T)\left(R_{p}\left(\delta_{a}\right)\right)$;
(3) $\left(a I-\left.T\right|_{R_{p}\left(\delta_{q}\right)}\right)^{-1}$ is Lipschitzian on $R_{(a I-T) p}\left(\varepsilon_{a}\right)\left(\left.T\right|_{R_{p}\left(\delta_{a}\right)}\right.$ is the restriction of T to $R_{p}\left(\delta_{a}\right)$).

Properties (1)-(3) permit us to denote by (r, M) a positive-number pair such that $\|(a I-T) x-(a I-T) y\| \geqq M\|x-y\|$ whenever $\{x, y\} \subseteq R_{p}(r)$. Let A $=a I-\left.T\right|_{R_{p}\left(\delta_{a}\right)}$, and denote by $\left|A^{-1}\right|$ the least nonnegative number B such that $\left\|A^{-1} x-A^{-1} y\right\| \leqq B\|x-y\|$ whenever $\{x, y\} \subseteq R_{A p}\left(\varepsilon_{a}\right)$. Finally, let

$$
c=\min \left\{1 /\left(2\left|A^{-1}\right|\right), M, \varepsilon_{a} / 3, \delta_{a} /\left[\left|A^{-1}\right|\left(2+\delta_{a}\right)\right], r /\left[\left|A^{-1}\right|(2+r)\right]\right\}
$$

and suppose that b is a complex number such that $|a-b|<c$. The remainder of the proof will be devoted to showing that b is in $\rho_{p}(T)$.

Let $\delta_{b}=\min \left\{r, \delta_{a}\right\}$ and $\varepsilon_{b}=\min \left\{\varepsilon_{a} / 2, c\right\}$. If each of x and y is in $R_{p}\left(\delta_{b}\right)$, then

Received by the editors November 5, 1974.
AMS (MOS) subject classifications (1970) Primary 47H99; Secondary 47H10.
Key words and phrases. Local resolvent set, nonlinear transformation, locally Lipschitzian, successive approximation, Banach space.

$$
\begin{aligned}
\|(b I- & T) x-(b I-T) y \| \\
& =\|b x-T x+a x-a x+a y-a y-b y+T y\| \\
& =\|(a I-T) x-(a I-T) y-(a-b)(x-y)\| \\
& \geqq\|(a I-T) x-(a I-T) y\|-|a-b|\|x-y\| \\
& \geqq(M-|a-b|)\|x-y\| \quad \text { since } \delta_{b} \leqq r .
\end{aligned}
$$

Since $|a-b|<c \leqq M$, we have that $M-|a-b|>0$. Thus $b I-T$ is 1-1 on $R_{p}\left(\delta_{b}\right)$ and $\left(b I-\left.T\right|_{R_{p}\left(\delta_{b}\right)}\right)^{-1}$ is Lipschitzian on $(b I-T)\left(R_{p}\left(\delta_{b}\right)\right)$. It remains to be shown that $R_{(b I-T) p}\left(\varepsilon_{b}\right) \subseteq(b I-T)\left(R_{p}\left(\delta_{b}\right)\right)$.

Denote by y a point of $R_{(b I-T) D}\left(\varepsilon_{b}\right)$. To show that y is in $(b I-T)\left(R_{p}\left(\delta_{b}\right)\right)$, we shall prove that the restriction of the transformation $A^{-1}((a-b) I+y)$ to $R_{p}\left(\delta_{b}\right)$ has a fixed point. The technique used is successive approximation.

Define a sequence u as follows. Let $u_{0}=p$. Then

$$
\begin{aligned}
\left\|(a-b) u_{0}+y-A p\right\| & =\|(a-b) p+y-(a I-T) p\| \\
& =\|y-(b I-T) p\| \\
& <\varepsilon_{b}<\varepsilon_{a} \quad \text { by choice of } \varepsilon_{b}
\end{aligned}
$$

Thus $(a-b) u_{0}+y$ is in $R_{A p}\left(\varepsilon_{a}\right)$. Since $R_{A p}\left(\varepsilon_{a}\right) \cong A\left(R_{p}\left(\delta_{a}\right)\right)$ by (2), let u_{1} $=A^{-1}\left((a-b) u_{0}+y\right)$. Thus

$$
\begin{aligned}
\left\|u_{1}-u_{0}\right\| & =\left\|A^{-1}\left((a-b) u_{0}+y\right)-A^{-1} A p\right\| \\
& =\left\|A^{-1}((a-b) p+y)-A^{-1} A p\right\| \\
& \leqq\left|A^{-1}\right|\|(a-b) p+y-A p\| \\
& <\left|A^{-1}\right| \varepsilon_{b} \leqq\left|A^{-1}\right| c \quad \text { by choice of } \varepsilon_{b}
\end{aligned}
$$

Furthermore,

$$
\begin{aligned}
\left\|(a-b) u_{1}+y-A p\right\| & =\left\|(a-b) u_{1}-(a-b) u_{0}+(a-b) u_{0}+y-A p\right\| \\
& \leqq|a-b|\left\|u_{1}-u_{0}\right\|+\left\|(a-b) u_{0}+y-A p\right\| \\
& <|a-b|\left|A^{-1}\right| c+\varepsilon_{b}<\left|A^{-1}\right| c^{2}+c .
\end{aligned}
$$

By definition of c we have that $\left|A^{-1}\right| c \leqq 1 / 2$, so $\left|A^{-1}\right| c^{2}+c \leqq(3 / 2) c$ $\leqq(3 / 2)\left(\varepsilon_{a} / 3\right)<\varepsilon_{a}$. Thus $(a-b) u_{1}+y$ is in $R_{A p}\left(\varepsilon_{a}\right)$, so denote by u_{2} the point $A^{-1}\left((a-b) u_{1}+y\right)$. Therefore

$$
\begin{aligned}
\left\|u_{2}-u_{1}\right\| & =\left\|A^{-1}\left((a-b) u_{1}+y\right)-A^{-1}\left((a-b) u_{0}+y\right)\right\| \\
& \leqq\left|A^{-1}\right||a-b|\left\|u_{1}-u_{0}\right\| \\
& <\left(\left|A^{-1}\right| c\right)^{2} \quad \text { since }|a-b|<c \text { and }\left\|u_{1}-u_{0}\right\|<\left|A^{-1}\right| c .
\end{aligned}
$$

This implies the following:

$$
\left\|u_{2}-p\right\| \leqq\left\|u_{2}-u_{1}\right\|+\left\|u_{1}-p\right\|<\left(\left|A^{-1}\right| c\right)^{2}+\left|A^{-1}\right| c .
$$

Finally, we have

$$
\begin{aligned}
\left\|(a-b) u_{2}+y-A p\right\| & =\left\|(a-b) u_{2}-(a-b) u_{1}+(a-b) u_{1}+y-A p\right\| \\
& \leqq|a-b|\left\|u_{2}-u_{1}\right\|+\left\|(a-b) u_{1}+y-A p\right\| \\
& <c\left(\left|A^{-1}\right| c\right)^{2}+c \sum_{i=0}^{1}\left(\left|A^{-1}\right| c\right)^{i} \\
& =c \sum_{i=0}^{2}\left(\left|A^{-1}\right| c\right)^{i} .
\end{aligned}
$$

For the inductive step, suppose that m is an integer not less than 2 and that $u_{0}, u_{1}, \ldots, u_{m}$ has the following properties:
(4) if k is an integer in $[1, m]$, then

$$
\left\|u_{k}-u_{k-1}\right\|<\left(\left|A^{-1}\right| c\right)^{k} \quad \text { and } \quad\left\|u_{k}-p\right\|<\sum_{i=1}^{k}\left(\left|A^{-1}\right| c\right)^{i}
$$

(5) if k is an integer in $[0, m]$, then

$$
\begin{align*}
& \left\|(a-b) u_{k}+y-A p\right\|<c \sum_{i=0}^{k}\left(\left|A^{-1}\right| c\right)^{i} \\
& u_{0}=p \quad \text { and } \quad u_{k}=A^{-1}\left((a-b) u_{k-1}+y\right) \tag{6}
\end{align*}
$$

for each integer k in $[1, m]$.
Since $\left|A^{-1}\right| c \leqq 1 / 2$, we have that $c \sum_{i=0}^{m}\left(\left|A^{-1}\right| c\right)^{i} \leqq 2 c \leqq 2\left(\varepsilon_{a} / 3\right)<\varepsilon_{a}$. Thus $(a-b) u_{m}+y$ is in $R_{A p}\left(\varepsilon_{a}\right)$, which is a subset of the domain of A^{-1} by (2); so let $u_{m+1}=A^{-1}\left((a-b) u_{m}+y\right)$. Then

$$
\begin{aligned}
\left\|u_{m+1}-u_{m}\right\| & =\left\|A^{-1}\left((a-b) u_{m}+y\right)-A^{-1}\left((a-b) u_{m-1}+y\right)\right\| \\
& \leqq\left|A^{-1}\right||a-b|\left\|u_{m}-u_{m-1}\right\| \\
& <\left|A^{-1}\right| c\left(\left|A^{-1}\right| c\right)^{m} \quad \text { by }(4) \\
& =\left(\left|A^{-1}\right| c\right)^{m+1}
\end{aligned}
$$

In addition,

$$
\begin{aligned}
\left\|u_{m+1}-p\right\| & \leqq\left\|u_{m+1}-u_{m}\right\|+\left\|u_{m}-p\right\| \\
& <\left(\left|A^{-1}\right| c\right)^{m+1}+\sum_{i=1}^{m}\left(\left|A^{-1}\right| c\right)^{i}
\end{aligned}
$$

by the preceding inequality and (4)

$$
=\sum_{i=1}^{m+1}\left(\left|A^{-1}\right| c\right)^{i}
$$

Finally,

$$
\begin{aligned}
\left\|(a-b) u_{m+1}+y-A p\right\| & \leqq|a-b|\left\|u_{m+1}-u_{m}\right\|+\left\|(a-b) u_{m}+y-A p\right\| \\
& <c\left(\left|A^{-1}\right| c\right)^{m+1}+c \sum_{i=0}^{m}\left(\left|A^{-1}\right| c\right)^{i} \\
& =c \sum_{i=0}^{m+1}\left(\left|A^{-1}\right| c\right)^{i}
\end{aligned}
$$

This completes the inductive step and defines a sequence u with the following properties:
(7) if n is a positive integer, then

$$
\left\|u_{n}-u_{n-1}\right\|<\left(\left|A^{-1}\right| c\right)^{n} \quad \text { and } \quad\left\|u_{n}-p\right\|<\sum_{i=1}^{n}\left(\left|A^{-1}\right| c\right)^{i}
$$

(8) if n is a nonnegative integer, then

$$
\begin{gather*}
\left\|(a-b) u_{n}+y-A p\right\|<c \sum_{i=0}^{n}\left(\left|A^{-1}\right| c\right)^{i} \\
u_{0}=p \quad \text { and } \quad u_{n}=A^{-1}\left((a-b) u_{n-1}+y\right) \tag{9}
\end{gather*}
$$

for each positive integer n.
Since $\left|A^{-1}\right| c \leqq 1 / 2$, we know that $\left\{\sum_{i=0}^{n}\left(\left|A^{-1}\right| c\right)^{i}\right\}_{n=0}^{\infty}$ is convergent and, hence, u is Cauchy. Since H is complete, denote by x the sequential limit of u.

To show that x is in $R_{p}\left(\delta_{b}\right)$ and $(b I-T) x=y$, let us first prove that $(a-b) x+y$ is in $R_{A p}\left(\varepsilon_{a}\right)$. If $d>0$ and t is a positive integer such that $\left\|x-u_{t}\right\|<d / c$, we see that

$$
\begin{aligned}
\|(a-b) x+y-A p\| & \leqq|a-b|\left\|x-u_{t}\right\|+\left\|(a-b) u_{t}+y-A p\right\| \\
& <c(d / c)+c \sum_{i=0}^{t}\left(\left|A^{-1}\right| c\right)^{i} \quad \text { by }(8) \\
& <d+2 c \\
& \leqq d+2\left(\varepsilon_{a} / 3\right) \quad \text { by the choice of } c .
\end{aligned}
$$

Thus $\|(a-b) x+y-A p\| \leqq 2\left(\varepsilon_{a} / 3\right)<\varepsilon_{a}$. This means that, since A^{-1} is continuous by (3), we have

$$
\begin{aligned}
x & =\lim _{n \rightarrow \infty} u_{n}=\lim _{n \rightarrow \infty} A^{-1}\left((a-b) u_{n-1}+y\right) \\
& =A^{-1}\left[\lim _{n \rightarrow \infty}\left((a-b) u_{n-1}+y\right)\right]=A^{-1}\left[(a-b) \lim _{n \rightarrow \infty} u_{n-1}+y\right] \\
& =A^{-1}((a-b) x+y) .
\end{aligned}
$$

Therefore $A x=(a-b) x+y$, so $a x-T x=A x=(a-b) x+y$ and $(b I-T) x=y$.

To complete the proof it must be shown that x is in $R_{p}\left(\delta_{b}\right)$. Since x is the sequential limit of u, we know by (7) that $\|x-p\| \leqq \sum_{i=1}^{\infty}\left(\left|A^{-1}\right| c\right)^{i}$, which is $\left|A^{-1}\right| c /\left(1-\left|A^{-1}\right| c\right)$ by the fact that $\left|A^{-1}\right| c<1$. The fact that

$$
c \leqq \delta_{a} /\left[\left|A^{-1}\right|\left(2+\delta_{a}\right)\right]
$$

implies that $\left|A^{-1}\right| c /\left(1-\left|A^{-1}\right| c\right) \leqq \delta_{a} / 2$. Similarly, the choice of c to be not greater than $r /\left[\left|A^{-1}\right|(2+r)\right]$ means that

$$
\|x-p\| \leqq\left|A^{-1}\right| c /\left(1-\left|A^{-1}\right| c\right) \leqq r / 2
$$

Thus

$$
\|x-p\| \leqq \min \left\{\delta_{a} / 2, r / 2\right\}<\min \left\{\delta_{a}, r\right\}=\delta_{b}
$$

so x is in $R_{p}\left(\delta_{b}\right)$ and y is in $(b I-T)\left(R_{p}\left(\delta_{b}\right)\right)$. This completes the proof.
An example of the phenomenon described by the Theorem is the transformation I^{*} on the complex numbers, which maps each complex number onto its conjugate. I^{*} is Lipschitzian, hence locally Lipschitzian at each complex number. The local resolvent set of I^{*} at 0 -indeed at any complex number-is the complement in the complex numbers of the unit circle.

The Theorem reveals a further similarity between the global spectrum of a bounded linear transformation and the local spectrum [2, pp. 212, 213] of certain nonlinear transformations. In doing so it heightens one's hope that there is a suitable local analog for nonlinear transformations to the spectral representation theory for bounded linear ones. One of the next questions to be answered in attempting to discover such a theory seems to be the following: Does a locally Lipschitzian transformation (or a continuously differentiable transformation on a non-finite-dimensional space) have a local spectrum? It is my feeling that the answer is affirmative.

References

1. E. R. Lorch, Spectral theory, University Texts in the Mathematical Sciences, Oxford Univ. Press, New York, 1962. MR 25 \# 427.
2. E. L. May, Jr., Localizing the spectrum, Pacific J. Math. 44 (1973), 211-218. MR 47 \# 4089.

Department of Mathematics, Salisbury State College, Salisbury, Maryland 21801

