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ON THE SECOND HOMOTOPY MODULE OF
TWO-DIMENSIONAL CW COMPLEXES

M. N. DYER

Abstract. Let A' be a connected 2-dimensional CW complex. This note

reproves from a very simple point of view two classical theorems of H. Hopf

relating the homology of the fundamental group it = irx(X) of X and the

Hurewicz map on ir2(X). This point of view also allows the dual theorems to

be proved. If w is a finite group, a new interpretation is given for

tf,(7r; Z) (/' = 2, 3) in terms of v2(X).

1. Introduction. Let it be an arbitrary group. A [it, 2]-complex is any

connected two-dimensional CW complex with fundamental group tr. Let X be

a [tr, 2]-complex. In this note we explore certain interesting relations involving

the vr-modules tt2(X).

For example, we extend and dualize the theorems of H. Hopf [2], [8], [9].

Let I be a [it, 2]-complex, p: X —> X be the universal covering map, h:

tt2(X) —> H2{X) the Hurewicz homomorphism with spherical image ~22(X),

and A = A (tr), the augmentation ideal in the integral group ring Ztr. If M is a

Tr-module, then A/" is the submodule of elements fixed under the action of tt

and AM is the submodule generated by [a ■ m\a E A, m E M). If tt is a

finite group and M any 77-module, let NM = ker{N: M —> M) where N(m)

= N ■ m and N = "S,x£„x is the norm element in Ztr.

1.1. Theorem. Let X be any [tr, 2]-complex. The following table expresses the

theorem: H\,*\tt) is the homology {cohomology) of the group tt with coefficients

in the trivial tr-module Z. H^iX) is the cellular homology (cohomology) of the

space X, considered as a tr-module via the action of tr on X.

A.    tr arbitrary B.    77 finite

(a) H2(X)/Z2(X) =* H2(tt) a tt2(XY/N-tt2(X)

(b) Iter h/A ■ tt2(X) » H3{tr) =Ntt2(X)/A ■ tt2{X)

(c) ker{p*: H2(X) -> H2(X)} est H2(tr) =NH2(X)/A ■ H2(X)

(d) H2(Xy/imp* at H3(tr) bi H2(X)'/N ■ H2(X)

Note. The Hopf theorems are expressed as 1.1 A(a), (b).

2. Arbitrary fundamental group. Given any two (left) vr-modules A, B,

A ®z B = A <8> B

is the 7r-module with diagonal action given by x(a ® b) = xa ® xb (x E tr,
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a G A, b G B). For any connected [it, 2]-complex X and w-module G, let

Hj(X; G) denote singular homology with local coefficients in G.

2.1. Theorem. For any [tt, 2]-complex X and any tr-module G,

(a) HX(X; G) * Hx(ir; G),

(b) Hi+3(w; G) « H,(v; -n2(X) ® G) (i > 1),

(c) 0-*H3(tt;G)^H0(tt; tr2(X) <8> G) -^/Y2(A-; G) -» //2(tt; G) -» 0,

u an exac/ sequence of tt-modules, where h is induced by the Hurewicz

homomorphism [4].

With G = Z, the trivial w-module, 2.1(c) is equivalent to the theorems of H.

Hopf for [tt, 2]-complexes given in   1.1 A(a), (b).

If G is an arbitrary w-module, then any module of the form Ztt <8> G (with

diagonal action) is called induced. If F is any free 7r-module, then

F ® G = ( © (Ztt),) ® G « Zw ® ( © Gx)
V\e^ / Vxe/4      /

is induced. A direct computation shows that Hj(tt; Ztt ® G) = 0 for any

i > 0 (see [7, p. 211]). Thus it is not surprising that if one [tt, 2]-complex X

satisfies 2.1(b), then so does any other [tr, 2]-complex X'. This follows

because a theorem of J.H.C. Whitehead implies that tt2(X) ©fs tt2(X') ©

F' for suitable free w-modules F and F'.

Proof. Let X be the universal cover of X and

X^X

4
K(tt, 1)

be the associated fibration (see [10, p. 286]). The Serre spectral sequence for

local coefficients in G has E2q = Hp(tr; Hq(X; G)) (Hq(X; G) is the ath

cellular homology of X with (standard) coefficients in the underlying abelian

group G0 of G and is considered a w-module via the diagonal action of tr on

C^(X) ® G and converges to H^(X; G)). X is simply connected and two-

dimensional yields E2q = 0 unless q = 0, 2. A long exact sequence thus arises

[10, p. 240]:

-» Hj_2(ir; tr2(X) ® G) -» //,(*; G) -> «i(»; G)

-XHj_3(tt; tr2(X) ® G)-> .. . -> #,(.*; G) -> /73(7r; G)

%H^n\ir2(X)® G) ^H2(X; G)-> H2(tr; G)-»0.

This, together with the fact that A' is 2-dimensional, yields the result. It is well

known that if p: X -» X is the projection, then p#: H2(X)^>H2(X) is

(essentially) the Hurewicz map. So with the identification

7t2(X)^-7t2(X)^H2(X)

we have h is induced by h: ir2(X) -» //2(X), according to [10, p. 271].
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Second proof of (b). For this we use the trick of W. Cockcroft and R.

Swan [3] together with the fact that /7,(tt; M) = 0 (/ > 0) for any induced

module M. The [77, 2]-complex X gives rise to an exact sequence of 77-modules

r) r)

e^{X):0^tt2(X)^C24cx-lc0-^Z-^0,

where G*(X) is the cellular chain complex for the universal X, C, is a free

77-module with rank equal to the number of /-cells in X, and e is the

augmentation homomorphism. This spawns three short exact sequences

0^772(A-)<8> G-*C2® G-> Bx ® G^O,

0-»5, ®G-»C, ® G -► 50 ® G -> 0,

0^£0®G^C0®G^G^O.

Since 77,(77; C, <8> G) = 0 for i > 0, the coefficient sequences for 77,(t7, -)

associated with the above exact sequences give

Hi+X{tr, Bx ® G) ^Hj(tt;tr2(X)® G),

Hi + 2(tt, B0 ® G) ^Hi+X{tt, Bx ® G),
a.

ff|+3(». G)^Hi+2(tr, B0®G)       {i> I).

Then /? = 3,+ ,3, + 23I + 3 is the prescribed isomorphism. That /? = d3 in the

spectral sequence is implied by the discussion in [11, p. 343].

For any two left 77-modules A, B, define HomL4, B) = Homz{A, B) to be

the 77-module with diagonal action: (x/)(a) = xf{x~xd) {x E tr, f E

HomL4, B), a E A). We state the corresponding results for cohomology (with

similar proof).

2.2. Theorem. Let X be a [tr, 2]-complex, G a tr-module. Then

(a) H\m; G) * H\X; G),

(b) Hl{tr;H2{X; G)) -^Hi + \tt; G) (1 > 1),

(c) 0 -» /72(t7; G) -^ 772(^; G) -^ 77°(t7; Z/2^; G)) -» 773(t7; G) -» 0

k exact, where p is induced from p: X -* X. Again H2{X; G) has untwisted

coefficients in the underlying abelian group Gp of G, and H2{X; G} is considered

a tr-module via the diagonal action on C*{X; G) = Homz{C^{X), G).

Note. For G — Z, 2.2(c) yields Theorem (1.1) A(c), (d). The use of the

Cockcroft-Swan technique to prove 2.2(b) is possible because for any free

77-module F = ©XeA(Z77)x, Homz(F; G) is coinduced; that is to say,

Hom(F, G) a Hom(z77,   II (G)Aj
\        XeA 1

as 77-modules. This implies that H'{tt; Hom(F; G)) = 0 for / > 0 [7, p. 211].

3. Finite fundamental group. For 77 finite we use the Tate cohomology

H'{ir; -) (/ e Z) [1, Chapter 11] given by
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#'(w;G) if / > 0,

tf'(w;G)- \G"/N-G if/ = °'
V NG/A-G if/ = -1,

H_j_x(tt; G) if /' < 0,

where NG = ker{N:   G^>G)  and A ■ G is the submodule generated by

{a-g|a G A(tr),g G G).

3.1. Theorem. Let it be a finite group and G an arbitrary tt-module. If X is

an [tt, 2]-complex, then

(i) H'(tt; G) * H'+\tt; ir2(X) ® G) (/ G Z),
(ii) //'(*; G) a tf'_3(ir; /72(i; G)) (/ E Z).

Proof. Apply the Cockcroft-Swan technique to the exact sequences

(i) 0 -> tr2(X) -> C2(i) -» C,(i) -> C0(i) -> Z -> 0

and

0 -» Z -> Hom(C0, G) -» Hom(C„ G)

-^Hom(C2, G)-+H2(X; G)->0.

In order to apply this, one needs to use the fact that H*(ir; F) = 0 for F a

free w-module [1, p. 199] or F = Hom(F', G), where F' is free.

/Vote. 3.1 proves Theorem 1.1 B(a)-(d) simply by letting G be the trivial

7r-module Z and by setting / equal to the following values:

(l.l)B /equals

(a) - 3 in (i)

(b) - 4 in (i)

(c) 2 in (ii)

(d) 3 in (ii)

Other values of t lead to interesting information:

(e) H2(it; tt2(X)) = H~\w) = 0 (t = - 1 in (i)),

(f) H3(tt; H2(X)) = H-\it) = 0 (/ = - 1 in (ii)),

(g) Hx(ir; 7t2(X)) st Hx(tt) at abelianization of ir (t = -2 in (i)).

(e), of course, is a result of A. J. Sieradski [5] and allows one to show that,

for X a [tt, 2]-complex, the self-equivalence group & (X) of homotopy classes

of homotopy equivalences X —> X is isomorphic to Aut T(X), the group of

automorphisms of the algebraic two-type T(X) of X [5].

Finally, 3.1 has the following amusing corollary.

3.2. Corollary. Let it be a finite group. If tt admits a [it, 2]-complex such

that H2(X) at tt2(X) as tr-modules, then H^tt) at Hi+6(tr) (i G Z). Thus tt is

a periodic group of period 2 or 6.

For example, if X is any finite [Z„, 2]-complex, then H2(X) at tr2(X) as a

Zn-module [6].

4. Generalizations. In this section we point out that these theorems, suitably

interpreted, hold in much greater generality. The proofs are essentially the

same.
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(a) All the results of this paper may be interpreted for [77, m]-complexes:

connected, m-dimensional CW complexes such that trx{X) = tt and for which

X is {m - l)-connected (w > 2). Thus, for example, if 77 is finite and X is any

[77, w]-complex, then

77'(77; G) a 77' + m+1(77;77m(A')® G)        {t E Z).

(b) Even further, the results hold for quasi [tr, m]-complexes: connected

CW complexes such that 77,(A') = 77, X is {m - l)-connected, and the tr-

module Cm{X)/Bm{X) is projective [4]. As is seen in [5, Theorem 1.3], X is a

quasi [77, /n]-complex iff X has the topological m-type of a space dominated

by a [77, w]-complex. If m > 3, then X is a quasi [77, w]-complex iff X has the

ra-type of a [77, m]-complex.
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