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SHORTER NOTES

The purpose of this department is to publish very short papers of an unusually ele-

gant and polished character, for which there is no other outlet.

ON NOWHERE MONOTONE FUNCTIONS

CLIFFORD E. WEIL

Abstract. The existence of everywhere differentiable but nowhere mono-

tone functions is established using the Baire Category Theorem, and the

relatively easy fact that there are nontrivial bounded derivatives with a dense

set of zeros.

Interest in everywhere differentiable, nowhere monotone functions was

revived by Katznelson and Stromberg in [4] where they gave a construction of

such a function which is considerably simpler than the original one due to

Kopeke or the one in the book by Hobson [3, pp. 412-421]. This work was

followed up by Goffman in [2] where a much shorter construction is given but

which uses a deep theorem due to Zahorski. Here the existence of such

functions is established using the Baire Category Theorem.

Let R denote the real line and let

D = {f: R —> R: fis bounded and there is a function

F such that F'(x) = f(x) for all x in 7?},

and endow D with the metric

d(fg)= sup \f(x) - g(x)\.
xBR

This is the metric of uniform convergence, and by a standard advanced

calculus theorem, a uniform limit of a sequence of bounded derivatives is a

bounded derivative. Hence D is a complete metric space. Let

D0 = {/ G D: [x: f(x) = 0) is dense in 7?},

and give to D0 the metric of D. Then D0 itself is complete for if {fk} is a

sequence in D0 converging in metric to f G D, then for each k, Zk

= {x: fk(x) = 0} is a dense Gs set and hence Z = D£L i Zk is dense in R. But

Z C [x:f(x) = 0}. Thus/ G D0.

It is not hard to show that D0 contains more than just the zero function (see

[1, p. 27] or [5]). The existence of such a function and the fact that Z>0 is closed
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Then clearly

under addition will be used below. The proof of the latter is like the

completeness of D0 only easier.

Theorem. Let

E = {f G Dq : there is an interval on which f is unsigned}.

Then E is of the first category in D0.

Proof. Let {/„} be an ordering of the collection of all closed intervals

having rational endpoints. Let

En = {/ G DQ:fix) > 0 for all x G /„}

and

F„ = {fG D0: fix) < 0 for all x G /„}.

00

E=   U(E„ U F„);
n=\

so it suffices to prove that En and Fn are closed and contain no spheres. The

argument will be carried out for En. A similar procedure works for Fn.

That En is closed is immediate. To prove that En contains no sphere suppose

f G Dq and e > 0. Since f G D0 there is an x G /„ such that /(x) = 0. Since

there are bounded derivatives having a dense set of zeros that are not

identically zero, by pushing and crushing it is not hard to prove that there is

a function h G D0 such that /i(x) < 0 and sup/eÄ|/i(y)| < e. Then g = / + h

belongs to D0, difg) < e, and g £ En since g(x) = fix) + /i(x) = /i(x)

< 0 and x G In. Thus the sphere of radius e about/is not contained in E„.
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