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ON LARGE CYCLIC SUBGROUPS OF FINITE
GROUPS

EDWARD A. BERTRAM1

Abstract. It is known that for each (composite) n every group of order n

contains a proper subgroup of order greater than tr3. We prove that given

0 < S < 1, for almost all n < x, as x -> oo, every group G of order n

contains a characteristic cyclic subgroup of square-free order > n1""1" ot"> ,

and provide an upper bound to the number of exceptional n. This leads

immediately to a like density result for a lower bound to the number of

conjugacy classes in G.

From the deep theorem by Feit and Thompson [6] that all groups of odd

order are solvable, it immediately follows that for every odd (composite)

integer n, if G is a group of order n then G contains a proper subgroup of order

> nx'2. On the other hand, Brauer and Fowler [2] showed that every group G

of even order n > 2 contains a proper subgroup of order > nx'3.

Denoting by k(G) the number of conjugacy classes in the finite group G, we

know that for every n, k(G) > log2log2« if G has order n (see, e.g., [5] or [8]).

Recently [1] the author showed that given any c < log 2, for almost all

integers n < x, as x —> oo, k(G) > (log nf for each G of order n. Here we

give a proof of the following

Theorem. Given 0 < ô < 1, almost all integers n < x, as x —* oo, have the

property that every group of order n contains a characteristic cyclic subgroup of

square-free order > n ~~ l"°%n> , where the number of exceptional integers is

< x(2 log log x)/(log x) for all large x.

As an immediate corollary we considerably improve the above density result

on the lower bound for k(G), now obtaining k(G) > nx~e.

Finally, we note that Erdös [4], sharpening the results of Dornhoff and

Spitznagel [3] on the scarcity of simple group orders, proved that for almost

all n < x, every group of order n has a normal Sylow /»-subgroup, where p is

the largest prime factor of n, and the number of exceptional integers is

< Vexp[(l/V2 + 0(l))(log x log log x)x/2}.

In the course of the proof of our theorem we find that if {e„} is a sequence

tending to 0 (however slowly) then for almost all n < x, as x -» oo, every

group of order n has a normal Sylow ^-subgroup of prime order p > ne",
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where of course the number of exceptional integers has an upper bound

depending on {e„}.

Lemma 1. The number ofpositive integers n < x, such that p2\n for some prime

p > f(x), is less than x/f(x).

Proof. Since, for fixed p, the number of integers < x which are divisible by

p2 is [x/p2], the number sought in the lemma is certainly no more than

s   F—1 < x  s  — < x   y   — < x f00 — = —
p>f(x) L/>2J    *      p>f(x)p2 m>f(x)m2 JfU) t2       fix)'

Lemma 2. The number of positive integers < x with a prime factor p > f(x),

and simultaneously a divisor d > 1 satisfying d = 1 (mod p), is less than

*(log x + \)/f(x).

Proof. For fixed p, the number of positive integers < x, which are

simultaneously divisible by p and some divisor d > 1 satisfying d = 1

(mod p), is at most 2/=i [x/p(lp + 1)]. Thus, the number sought in the

lemma is no more than

*/>2] r      x      -i / 1 U/p2} ! v

p>f(x)  (-1   LPVP+ UJ p>f(x) \p->/w /=i Vp(ip + i)J      ,>/hv2 i-i //

<27)(  2   -i,) < UlSfjïfi)
\/=l ' / \m>f(x) m¿/ f(x)

<x(
^m>f(x) W

Lemma 3. The number of integers < x which have a divisor d > h(x), such that

each prime factor of d is < g(.x), is less than x(\og(g(x)) + cx)/\og(h(x)).

Proof. If mx, m2, m3, ..., mN denote these integers, then in 11/= i m¡ the

contribution of the primes < g(x) is at least h (x). On the other hand, the

primes < g(x) certainly contribute no more to 11/= i m¡ than their contribu-

tion to [x]\ Hence

hN(x) < n pŒ»twi) < n p{x'{p-x))
P<g(x) P<gW

or

N \og(h(x)) -,     \ogp =    _,    log/? |     „       logp

* ^áU*-«"-1    /Kg«  ^     ,<*(*)/*/>-0

P<g(x)    P J-2JÜ - U

since we know [7, 22.6] that

2   ^ = iog(gW) + o(i),
K*M    p

and the infinite sum converges.
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Lemma 4. Given 0 < Ô < 1, almost all integers n < x, as x -* oo, have a

square-free divisor n0 with the properties:

(i) if a prime p divides n0, then p > (log x)     ;

(ii) for each prime p which divides n0, if d > 1 divides n, then d # l(mod p);

(iii) (n0,n/«o) = H, ■
(iv) n0 > «'-'/dog«)1-8.

Proof. Given 0 < 8 < 1, almost all « < x satisfy n > xs; for such « and

all large x,

_2_ > „l-l/S(log*)'-s > „l-l/flog»)1"^

exp ((log x) )

Lemma 3, withg(x) = (log x) + and h(x) = exp((log x) ), implies that the

number of integers n < x, with prime decomposition

satisfying

n  - P\   Pi 'Pi   Pl+l •/'„(„)       (ft  < ft + l)

ft < (log x)1+á < ft+1    and    u Pf > exp((log x)6)
i=l

for some /, is less than x((l + <5)log log x + Ci)/(log x) (showing, since we

may assume x < n, that almost all integers n < x, as x —* oo, have a prime

factor > (log x) + ). Lemmas 1 and 2 (with f(x) = (log x) + ) now show that

except for at most x/(log x) + + ;t(log x + l)/(log x) + of those integers

n < x, n = ILL, pf n;if]+1 /¡f, ft < (log x)l+6 < Pl+X and ft1., ^
< exp((log a:) ), we have for / + 1 < j < r(/i): (a) a^- = 0 and (b) d\n and

d > 1 => d # 1 (mod/»,-). For such «, put n0 = 11/=/+1 Pj- Then n0 is square-

free and satisfies (i) through (iv). Finally, the number of integers n < x which

do not have such a square-free divisor n0 is less than

S , x((\ + (S)loglogx + cx) x x(log x + 1)

(logx)S (\ogx)X+S       (\ogx)X+S

log log X
< 2x-f    for all large x.

(log x)S

Theorem. Given 0 < S < 1, almost all integers n < x, ai x —» oo, /We fAe

property that every group of order n has a characteristic cyclic subgroup of square-

free order n0 > nx   x'('0&">    , where (n0,n/n0) = 1.

Proof.2 We prove that each n < x, which has a square-free divisor n0

satisfying (i) through (iv) of Lemma 4, has the property stated in the theorem.

Assume that n has such a divisor n0 = pxp2 ■ ■ ■ pk(n0,n/n0) = 1. Then each

Sylow/»,-subgroup of G, Sp(G), 1 < r < k,; is a normal subgroup (cyclic, of

order /»,) of G, by property (ii) of Lemma 4, applied to the total number d¡ of

Sylow /»,-subgroups of G. Moreover, since the image, under any automorphism

2 We thank the referee for simplifying the original proof (by induction) and also showing that

the subgroup is characteristic.
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of G, of an element of order p¡ is another element of order p¡, each Sp.(G) is

characteristic in G. Also, Sp. D Sp is the identity subgroup, for each pair

i ¥=j,\ < i,j < k. Thus g¡gj = g;g, for each such i, j, since glgjgj~XgJ~X

G Sp. n Sp, by normality. If g, generates Sp.(G), the product g,g2 • • -gfc is

therefore an element of order pxp2 ■ ■ ■ pk = n0, and so generates a (cyclic)

subgroup H of order n0. Since H is generated by the characteristic subgroups

Sp.(G), it is also a characteristic subgroup of G.

Remark. Let ex be a (positive) function tending to 0 arbitrarily slowly as

x —> oo. From Lemma 3, with g(x) = xe" and «(x) = \/x, almost every n < x

has a prime factory > xe"; and almost none of these integers has a nontrivial

divisor ■ 1 (mod p), by Lemma 2. Thus for almost all n every group of order

n has a normal Sylow/»-subgroup of order/? > ne".

Corollary. Given e > 0, almost all n < x have the property that k(G)

> nx~e for each group G of order n.

Proof. Suppose G is a group of order n, and H a cyclic subgroup of G, of

order «0 > nx~e'2. Let the (complete) conjugacy class (in G) of h G H be

denoted by [h], and the centralizer (in G) of h by C(h).

Summing over the kG(H) distinct classes (of G) in H we have

«o -1*1-2 l[A] n H\< max|[A]| • *c(#)

<'-"'*(£Li<f:*(g>'minÄeW|C(A)|      «o

orA:(G) > /ijj/n > «1_E.

Remark. uVy/cw comments that by more complicated number theoretic methods

one can prove that as f(n) —* oo arbitrarily slowly almost every n has a square-

free divisor d > «/(log n) so tnat (d,n/d) = 1 and, for every p\d,n has no

nontrivial divisor = l(mod p). This is best possible and leads to an improvement

of the main theorem, replacing „i-'/Oogn)1"4 ¡,y „l-f/Wloglog^/iogn
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