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GROUP RINGS WITH SIMPLE
AUGMENTATION IDEALS

K. BONVALLET, B. HARTLEY, D. S. PASSMAN1 AND M. K. SMITH

Abstract.    Group algebras of algebraically closed groups and of universal

groups are shown to have simple augmentation ideals and to be primitive.

In recent years a large number of examples of primitive group rings have

been constructed. In this note we offer some additional examples. However

here primitivity is really a secondary consideration since it follows from the

even more surprising property that in these group rings K[G] the augmenta-

tion ideal u(K[G]) is the unique proper ideal. The following theorem has a

rather unwieldly hypothesis. Nevertheless, as will be apparent, it is precisely

what is needed to handle the families of algebraically closed groups and

universal groups.

Theorem. Let G be a simple group, let K be a field and let q be a prime

different from the characteristic of K. Suppose that for any finite number of

distinct elements 1 = x0, xx, ..., xn E G there exist elements y0,yx, ... ,yn

E G such that

(1) (yp\i = 0,1,... ,n,j = 0,1,... ,n) is an elementary abelian q-group.

(2) (,(y¡,x/)\i = 1,2,...,«) has order precisely q".

(3) (yoJ\j = 0,1,... ,n) has order precisely qn+x.

Then u(K[G}) is the unique proper ideal of K[G\. Furthermore K[G] is primitive.

Proof. Suppose that / is a nonzero proper ideal of K[G]. We proceed in a

series of steps.

Step 1. Let a E I, a ¥= 0. Then we can assume that 1 occurs in the support

of a and we write a = 2o k¡x~x with 1 = x0, xx, ..., xn distinct elements of

G and with k0 ¥= 0. We apply the hypothesis of this theorem to these elements

and let yx, y2, ..., y„ be given as in (1) and (2). Thus by (1) if A is the group

A = (y/J\i = 1,2,... ,nj =■=» 0, 1, ..., «) then A is an elementary abelian q-

group. Set z, = (y^x/) = y~xx/xy¡Xi for i = 1,2, ..., n.

We show now by inverse induction on í with n > s > 0 that / contains an

element

s

ßs  =   2   ßsiXj  '
.-_n
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with ßsi G K[A] and such that for s < n

ßs0 = k0(zn- l)(z„_x- l)...(zJ+1-l).

First for x = n we merely take ßs = a. Now suppose we have ßs as above

contained in / with 5 > 0. Then y~ ' ßsys and zsßs both belong to / and hence

ß_j = zsßs-ys~xßsys G I.

Furthermore since A is abelian and >>,, zs G A we have

ßs-i = 2 zsßsixix - 2 ys~xßSixTxys
í=0 (=0

i

= 2 ßsi{zs - Oí,*,-)}*,-1
i=0

5-1

= 2 fe{zs - (ys,x¡)}xYx
(=0

since zs = (^..x,). Thus since x0 = 1, ßs-iß has the appropriate form and the

induction step is proved.

In particular, when s = 0 we conclude that

A)-*«^-i)(«^,-i)-vC«i-i)6/.

Furthermore k0 =£ 0 and

(zx,z2,...,zn) = <z,>X<z2>X---X<z„>

is a direct product of cyclic groups of order q by property (2). Hence ß0 j* 0

and we have shown that there exists a finite elementary abelian «/-subgroup A

of G with / n K[A] ¥> 0.
.Sie/) 2. Let A be a finite elementary abelian ¿/-subgroup of (7, whose

existence is guaranteed by Step 1, such that / n K[A] ¥= 0. Write A

= {1 = x0,xx,... ,x„) and lety0 G G be given satisfying (1) and (3). Thus by

(1), if B is the group B = (yfrlj = 0,1,... ,n), then B is an elementary

abelian c/-group normalized by A. Furthermore since \B\ = qn+x and n + 1

= \A\, it is clear that A acts faithfully on B so A n B = (I). Thus we

conclude first that H = BA is the semidirect product of B by A and then that

H ^ Zq 'v A with Z? corresponding to the cyclic group Oo)- It follows that

3(H), the center of H, is the cyclic group of order q generated by z

— .Vo -^0        >u •
Let i be fixed and let B¡ = {(¿?,x(-)|è G fi}. Since Z? is abelian the map

B —> B¡ given by b —> (6, x,) is easily seen to be a homomorphism onto. Hence

B¡ is a subgroup of B and /?, =± B/CB(x¡) since Cfi(x,) is clearly the kernel of

the homomorphism. It then follows easily in K[G] that

2 (xTx)b = 2 (b,x¡)x-x = toCxM*-1

where B¡ denotes the sum of the elements of B¡.

Now let a = 2 M/"' G * n *M with ^o ** °- Tnen ß = 2¿,e¿? ¿_'«e
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E I and by the above

ß = ^ki\CB(xi)\Bix/x.
i

For/ = 0, sincero = 1 the summand here is/c0|5|xo ' — k0\B\. On the other

hand if /' ¥= 0 then xi does not centralize B so B¡ is a nonidentity subgroup of

B. Furthermore since both A and B are abelian, we conclude easily that

B¡ A H and hence since H is a q-group this yields B¡ fl 3(#) 9* (!)• Thus

z E B¡ so (z — \)B¡ ,= 0 and we have

(z - \)ß = k0\B\(z - 1).

Finally (z — l)ß E I, k0 ¥= 0 and \B\ =£ 0 in A^ since by assumption q

¥= char K. We have therefore shown that there exists a nonidentity element

z E G with z - 1 G /.

Step 3. Let H — [h E G\h — 1 £/}. Then since /is an ideal it follows that

H is a normal subgroup of G. Furthermore by Step 2 we have H ¥= <1>. Hence

since G is simple we conclude that H = G and this implies immediately that

/ 2 w(A"[G]). But o^Ä^G]) is a maximal ideal of K[G] so this yields

/ = w(if[G]) and we have therefore obtained our main assertion.

Finally apply the hypothesis of the theorem with 1 = x0. Then by (3), G

has a cyclic subgroup C of order q and hence e = 1 — C/q is a nonzero

idempotent of K[G]. Furthermore, nonzero idempotents are never contained

in the Jacobson radical of a ring so there exists an irreducible A1[G]-module V

with Ve # 0. Since e E u(K[G]) this yields Vco(K[G]) ̂  0 and thus the zero

ideal is the only possibility for the kernel of the action of K[G] on V. This

means that F is a faithful irreducible A1[G]-module so K[G] is primitive and the

Theorem is proved.    D

To see where the above elements _y, might come from, we make the following

simple observation.

Lemma. Let I = xq, xx, ..., xn be distinct elements of G and let A

= (y0,yx,... ,yn) be an elementary abelian q-group of order qn+x. If A and G

are suitably embedded in the wreath product A *v» G, then the elements x¡ and y¡

satisfy conditions (1), (2) and (3)  of the Theorem.

We now use this to handle some interesting families of groups. A group G

is said to be algebraically closed [3] if every finite system W¡(xj,yk) = 1 and

W¡(xj,yk) # 1 of word equations and word inequalities, in the variables^ and

group elements x¡, which has a simultaneous solution in some group extension

of G also has a solution in G. Such groups are quite plentiful and in fact, by

[3, Theorem 1], every infinite group can be embedded in an algebraically

closed group of the same cardinality.

Corollary 1. Let G be an algebraically closed group and let K be afield. Then

u(K[G]) is the unique proper ideal of K[G] and the group ring is primitive.

Proof. By [2], G is a simple group. Fix a prime q different from the

characteristic of K and let 1 = x0, xx, ..., x„ be finitely many distinct

elements of G. Then by the Lemma there exists a group extension of G having

elements y0, yx, ..., yn satisfying conditions (1), (2) and (3) of the Theorem.
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But observe that condition (1) is merely a finite set of commuting and order

equations and that, given (1), conditions (2) and (3) amount to a finite set of

inequalities. Thus since G is algebraically closed these equations and inequal-

ities must also have a solution in G. Thus the Theorem applies and the result

follows.    D
Other groups of interest are the universal groups of Ph. Hall. A group G is

universal (see [1, Chapter 6]) if it is locally finite, contains copies of all finite

groups and has the property that any two isomorphic finite subgroups are

conjugate. Such groups are reasonably numerous and indeed, by [1, Theorem

6.5], every infinite locally finite group can be embedded in a universal group

of the same cardinality.

Corollary 2. Let G be a universal group and let K be afield. Then u(K[G])

is the unique proper ideal of K[G] and the group ring is primitive.

Proof. By [1, Theorem 6.1(d)] G is simple. Fix a prime q different from the

characteristic of K and let 1 = x0, xx, ..., xn be finitely many distinct

elements of G. Then H = (x0,xx,... ,x„> is a finite group, since G is locally

finite. By the Lemma, if A = (y0,yx,... ,yn} is an elementary abelian ¿/-group

of order q"+x then the elements x¡ and yi in A A» H satisfy properties (1), (2)

and (3) of the Theorem. But by [1, Theorem 6.1(b)] the embedding of H into

G can be extended to an embedding of A "^ H into G. Therefore G satisfies

the hypothesis of the Theorem and the result follows.    □

Finally let G be an arbitrary group. If H is a proper normal subgroup of G,

then / = u(K[H]) ■ K[G] is a proper ideal of K[G] distinct from the augmen-

tation ideal. Thus a necessary condition for co(AT[G]) to be the unique proper

ideal of the group ring is that G be simple. On the other hand this condition

is by no means sufficient. Consider for example G = Altn where Q is an

infinite set and each element of G moves only finitely many points. Of course

G is simple. Let K by any field and form the permutation module V for K\G\

That is, V has as a AT-basis the elements of ß and G acts on V by appropriately

permuting this basis. If a and t are two disjoint permutations in G, for example

take a = (123) and t = (456), then it is easy to see that (a - 1)(t - 1) ^ 0

acts trivially on V but that a - 1 does not. Hence the kernel of the action of

K[G] on F is a proper ideal different from u(K[G]).
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