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TEST MODULES AND COGENERATORS

PETER VAMOS

ABSTRACT. If Homg(4,T) = O implies that 4 = 0 for all R-modules 4,
then the R-module T is a test module. The ring R is said to be a TC-ring if
every test module is a cogenerator. If S is a simple module over a TC-ring
then Endg E(S) is a local semifir. A commutative ring R is a TC-ring if and
only if R, is a P.LD. for all maximal ideals M of R.

All rings have an identity element and modules are unitary left modules.
For an R-module 4, E(4) denotes the injective envelope of 4 and A* the k-
fold direct sum of A. Let R be a ring and T an R-module. We say that T is a
test module if Homg(4,T) = 0 implies A = 0 for all R-modules A. The
following result was proved by T. Cheatham and R. Cumbie.

THEOREM A [1, THEOREM 3. For a ring R the following are equivalent:
(i) every test module is a cogenerator;
(i1) for all simple modules S, E(S) is contained in every nonzero factor of E(S).

A ring satisfying conditions (i) and (ii) in Theorem A is called a TC-ring.

Let R be a TC-ring, S a simple R-module and set E = E(S). Some of the
properties of E which follow easily from Theorem A are set out in the
following two lemmas.

LEMMA 1. Let A be a nonzero factor module of E. Then the following assertions
are true:

(i) the socle of A is a direct sum of copies of S and A is an essential extension
of its socle;

(ii) if the socle of A is isomorphic to S* for some integer k > 0, then A ~ E*;

(iti) if f € Endg E and f # O then f is onto;

(iv) if S’ is another simple R-module such that S & S’, then Homg(E, E(S’))
= 0.

PrOOF. Property (i) was noticed in [1] and is a simple consequence of
condition (ii) in Theorem A. Now assume that the socle of A is S¥ for some
k > 0. Since A contains E we have 4 = E ® A’ and A" # 0 if k > 1. Since
A’ is again a factor of E it has, in turn, a summand isomorphic to E if & > 1.
Continuing this we obtain 4 ~ E*. Next, let f € Endpz E, f # 0. Then
f(E) C E and f(E) contains a copy of E. Since E is indecomposable,
f(E) = E. Finally (iv) is immediate from (i).
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We remark that in view of (iv) in Lemma 1 the ¢ cofinitely ’ generated
modules over a TC-ring split into their * homogeneous’ components. For the
details the reader is referred to [2, Theorem 4.26].

LEMMA 2. Let Q = EndRjE, fi, ..., fi € Q and assume that the intersection
Ker fi N -+ N Ker f, is irredundant. Then the natural monomorphism

h: E/(Kerfy N -+ N Kerfy) > E/Ker f; & - - - & E/Ker §,
is an isomorphism. In particular Ker f; + (M, ;Ker f;) = E forall 1 < i < k.

Proor. It is well known that A is an essential monomorphism (e.g. [2,
Theorem 4.9]). Also, E/(Ker f; N --- N Ker f£,) is injective by (ii) of Lemma
1. Thus A4 is an isomorphism. The second part of Lemma 2 now follows from
the fact that h(Ker f;) = @;,,E/Ker f; and (", Ker f;) = E/Ker f;.

By a local ring we mean a ring with a unique maximal (left) ideal.

PROPOSITION 3. The ring of endomorphisms Q of E is a local semifir i.e. Q is
a local domain and every finitely generated (left) ideal of Q is free.

PROOF. Since E is indecomposable, Q is local and (iii) of Lemma 1 implies
that Q is a domain. Let L = Qfy + --- + Of,, f;, ..., f, € Q be a left ideal
of 0. We may assume that L # 0 and that Ker fj N --- N Ker f, = Ker f;
N .-+ N Ker f, for some 1 < k < n with Ker fy N --- N Ker f, irredun-
dant. If f € L then Ker f O Ker fy N --- N Ker f, and a standard argument

shows the existence of g;, ..., g, € Qsuch that f = g f; + -+ + g, f. (See
e.g. [2, Theorem 5.15, p. 144].) Hence L = Qf; + - -+ + Qf,. We claim L is
free on fi, ..., f. Let gifi+ -+ g/, = 0,8, ..., 8 € Q and suppose

that g;(a) # 0 for some a € Eand 1 < i < k. Put 4 = M;«;Ker f;. Then
E = Ker f; + A by Lemma 2 and f;(4) = E. Now a = f,(b) for some b € 4
and 0 = (g fy + - + g i) (b) = g,f;(b) = g;(a) # 0. Thus g; = 0 for all
1 < i< kandL is free.

THEOREM 4. For a commutative ring R the following are equivalent:

(i) R is a TC-ring;

(ii) Ry is a P.I.D. for all maximal ideals M of R;

(iii) every nonzero factor module of E(R/M) is isomorphic to E(R/M) for all
maximal ideals M of R.

ProoF. The implication (iii) = (i) is clear and the equivalence of conditions
(i) and (iii) is a special case of the Corollary in [3].

Assume (i) and let M be a maximal ideal of R. Set E = E(R/M). Then E
is, in a natural way, an R, module and it is the Ry -injective envelope of the
only simple R), module R/M ~ R,;/Ry; M. Then R, is also a TC-ring by (ii)
of Theorem A. In other words we may assume that R is a local ring with
maximal ideal M. Then E is a cogenerator and we may assume that R is a
subring of End, E. Hence R is a domain by Proposition 3. Let f, g € R. We want
to show that either Rf DRg or Rg DRf. We may assume that fg # 0. If Ker f N
Ker g were irredundant then E = Ker f + Ker g by Lemma 2. But Ker fg DKer f+
Ker g and fg # 0. Therefore either Ker f DKer g or Ker g OKer f. Next, the fact
that £ is the minimal injective cogenerator implies that Ann, Anng L = L for all
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ideals of L of R (see[2, p. 148, (5.4.3)]). This, in turn, yields Rf DRg or Rg DRf.
Thus R is a valuation domain. Let L be a nonzero ideal of Randa € L, a # 0. Set
K = Ma. Since the ideals of R are totally ordered we have K CL, K is irreducible
and R/K is an essential extension of Ra/K ~ R/M. Therefore E(R/K) ~ E and the
natural epimorphism R/K — R/L extends to a homomorphism E — E(R/L).
This shows that R/L is contained in a nonzero factor of E and the socle of
R/L is nonzero by Lemma 1. Since L is irreducible, we obtain that E(R/L)
X E. Accordingly, R/L is Artinian for all nonzero ideals of R by [2, Theorem
3.21]. But this can only happen if R is a field or a rank-one discrete valuation
ring. In either case, R is a P.1.D.
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