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UNIQUENESS OF EMBEDDINGS OF CERTAIN
INDUCED MODULES

J. LEPOWSKY1

Abstract. A theorem of D.-N. Verma on the uniqueness of embeddings of

certain algebraically induced modules is generalized from the case of Borel

subalgebras of semisimple Lie algebras to the case of arbitrary parabolic

subalgebras.

1. Introduction. Our main purpose is to prove:

Theorem 1.1. Let g be a semisimple Lie algebra over a field of characteristic

zero, p a parabolic subalgebra of g, L and M one-dimensional ^-modules, and VL

and V the corresponding (algebraically) induced Q-modules. Then

dim Homg(FL, VM) < 1, or equivalently, dim Homp(L, VM) < 1. Moreover,

every nonzero ^-module map from VL into V    is an injection.

By parabolic subalgebra of g we mean as usual a subalgebra whose

extension to the algebraic closure of the base field contains a Borel subalgebra

of the corresponding extension of g. Recall also that if § is the universal

enveloping algebra of g and 9 C § the same for p, then the induced g-module

VL is § ®gj L (see for example [1, §5.1]). The equivalence of the two conditions

in the theorem follows immediately from the universal property of the induced

module VM (see for example [1, Proposition 5.1.3]). Note that Theorem 1.1

implies that VL can be embedded in essentially at most one way in VM.

Theorem 1.1 generalizes D.-N. Verma's theorem [1, Théorème 7.6.6], which

is the special case in which g is split semisimple and p is a Borel subalgebra.

Our proof of the first part of Theorem 1.1 is a sharpening of Verma's proof2;

the last assertion of the theorem is easy.

In a subsequent paper [3], we shall apply Theorem 1.1 to give a new proof

of the uniqueness assertions concerning conical vectors in Theorems 10.1 and

10.2 of [2]; cf. the Introduction of [2].

2. Proof of Theorem 1.1. Let k be the base field of characteristic zero. By

extending to the algebraic closure of k if necessary, we see that it is sufficient

to prove Theorem 1.1 in the case in which g is split semisimple with splitting
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Cartan subalgebra b, and p contains a Borel subalgebra b containing i). Let

A+ C Í)* (* denotes dual) and II C A+ be the corresponding systems of

positive and simple roots, respectively. Write n for the nilpotent subalgebra

J g(p (rjD G A+) of g (where g9 as usual denotes the root space), so that

b = b © n. Then there is a subset n0 of IT such that if A0 is the set of roots

in the span of II0 and A0 the set of positive roots not in Aq, then p = r0 © n0,

where r0 = b © JJ g9 (<p G A0) and n0 = LI S9 (<P G A0). Also, r0 is a
reductive subalgebra of g; n0 is a nilpotent subalgebra; [r0, n0] = n0; A0 is the

set of roots of r0 with respect to its splitting Cartan subalgebra b; and il0 is a

simple system in A0.

Clearly, r0 = S0 © b0, where ê0 = [r0,r0] and bo = H Ker y (<p E IT0).

Also, §0 is split semisimple with splitting Cartan subalgebra t0 = b n ê0, b0 is

the center of r0, and b = to ® Öo •

Since [p,p] = §o ® no> trie one-dimensional p-modules are defined by the

linear forms on p which vanish on §0 © n0, and hence by the members of b* ■

If X E b*, extend À to a linear form on p vanishing on §0 © n0 ; then

multiplication by this linear form on k defines the corresponding one-

dimensional p-module. Denote by Vx the g-module induced by this p-module.

Then Vx = % ®<$ k, where % is regarded as a right iP-module by right

multiplication. What we must prove is the following:

Theorem 2.1. For all X, ¡x E b*, dim Homg(Fx, V1) < 1. Moreover, every

nonzero Q-module map from V   into V^ is an injection.

Let nô be the nilpotent subalgebra LI gf (<p G -A0) of g, and 9l(J C § its

universal enveloping algebra. Since g = nö © p, the multiplication map in §

induces a linear isomorphism § sz 9l0 ® 9. Let À G b*, and let v0 = 1 ® 1

G § ®g, k = Vx. Then v0 generates Vx as a §-module, and is called the

canonical generator of Vx. Clearly, the map w: %q —> Vx, x h> x ■ v0 is a

linear isomorphism.

We shall use the following terminology below: If a is a Lie algebra, U an ct-

module, u E U a nonzero vector and ju. G a*, then u is called a weight vector

and ¡i a weight for a if x ■ u = fi(x)u for all x E a. For all ¡i E a*, let IA be

the subspace of U consisting of 0 and the weight vectors for /¿. Then U is

called the weight space for /i. It is nonzero if and only if ju is a weight for U. It

is clear that the canonical generator v0 of Vx is an 80 © n0 - invariant weight

vector for bo w'th weight X.

Theorem 2.1 will now be proved using a series of lemmas. The first of these

proves the second part of the theorem.

Lemma 2.2. Let X G b* and v G Vx, v ¥= 0. Then the map from 9L¿" into Vx

taking x E %$ to x ■ v is injective. Moreover, if /t G b*, then any nonzero g-

module map from V1 into V   is injective.

Proof. Since the map u (see above) is a linear isomorphism, we may write

v as y ■ i>0, where y E %q , y ¥= 0. If x E 91q , x ¥= 0, then xy # 0 in 91g"

since 91Ö has no zero divisors. Thus xy ■ v0 =£ 0 in Vx, so that x • v ^ 0. This

proves the first assertion. To prove the second, let v'0 be the canonical

generator of V^ and let /: V^ -* Vx be a nonzero g-module map. Then

v = /(yo) * 0. Let w G F^, w # 0. Then w = z • t/0 for some z G 91Ö, z

7e 0. Hence /(w) = z ■ y »* 0 by the first assertion of the lemma.    Q.E.D.
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Lemma 2.3. Let X G b*. Then Vx contains an irreducible Q-submodule

generated by an n-invariant weight vector for h.

Proof. Since Vx is generated by an n-invariant weight vector for b, the

canonical generator, V is the g-module quotient of a Verma module V (i.e.,

a g-module induced by a one-dimensional b-module) by a submodule W of V

(see [1, Proposition 7.1.8(i)]). By the standard properties of Verma modules

(see [1, Proposition 7.6.1]), V has a composition series, and every irreducible

subquotient of V is generated by an n-invariant weight vector for b. Thus the

same is true of V/W, proving the lemma.    Q.E.D.

Let \¡>x, ..., \pr G b* be the (not necessarily distinct) restrictions to bo of the

roots in A0. Note that each \p¡ ¥> 0. For all \p G b*, define P0(if) G Z+ to be

the number of sequences nx, ..., nr of nonnegative integers such that \p

= 2,r=i ",'/',• The next two results relate the "partition function" P0 to

multiplicities of weights.

Lemma 2.4. Under the adjoint action of bo on 9l¿", 9LJJ" is a direct sum of its

weight spaces for b0. For all ¡ti G b*, /* is a weight for 91Ö if and only if

P0(-n) > 0, and dim^)» = Po(-p)-

Proof. Let yx,...,q>r be the elements of A0, labeled so that their

restrictions to bo are \¡/x, ..., \pr, respectively. Let ex, ..., er be nonzero

elements in g_cpi, ..., g-<iV, respectively. Then ex, ..., er form a basis of no,

and so the monomials e"' e22 • • • e"r form a basis of 9lg , as {«,,..., nr) varies

among the sequences of nonnegative integers. Since the indicated monomial is

a weight vector with weight - 2(-1 «,>/', for bo, the lemma is proved.    Q.E.D.

Lemma 2.5. For all À £ íj, K is a direct sum of its weight spaces for bo- For

all ix G b*» dim V* = P0(X - ¡i). More generally, if v G b* and v G %x,v

¥= 0, then dim(9LÖ • v)   = P0(v - /¿).

Proof. This result follows from Lemma 2.4 and the first part of Lemma 2.2,

together with the fact that for all /t G b*, (9i¿~),.->. ' v is included in and hence

equals (9l,J • v\.   Q.E.D.

Lemma 2.6. Let X, /a G b*, and suppose that dim Homg(Fx, V) > 1. Then

there exists v G b* such that for all a G b* and n G Z+, P0(a + n(¡i — j»))

> 2"P0(o).

Proof. Let V be an irreducible g-module isomorphic to a g-submodule of

V and generated by an n-invariant weight vector for b (see Lemma 2.3), and

choose any v G ï)* such that Vv ¥= 0, and any v G Vv, v # 0. Composition

with the injection from V into Vx gives a natural map Homa(Fx, V1)

-* Hom8(K, Ff4). By the second part of Lemma 2.2, this map is injective, and

so dim Homfl(K, V*) > 1. Let / and g be two linearly independent g-maps

from Kinto V*. Then/(K) # g(V), because f(V) = g(V) would imply that

V admits a nonscalar g-module automorphism, a contradiction (see [1,

Proposition 7.1.8(iv)]). Since V is irreducible, f(V) n g(V) = 0. Hence

9^0 • f(v) H 91Ö • g(v) = 0, and so for all t G b*,

P0(H - t) - dim li^ > dim(9lô -/(v)), + dim(9lö • g(v)\ = 2P0(v - r),

by Lemma 2.5. Setting a = v - r, we get P0(a + (/t — v)) > 2^(0) for all
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a G b*, and the lemma is now immediate.    Q.E.D.

Lemma 2.7. The restrictionsax, ... ,a to b* of the members of II — H0form

a basis of b* • For all £ G b* such that | is a nonnegative integral linear

combination of the a/s, let s(£) be the sum of the coefficients in the corresponding

expansion of |. Then P0(è) < (s(£) + l)r, where r is, as above, the cardinality of

Ao-

Proof. The first assertion is clear. To prove the second, we just imitate the

argument in [1, Lemme 7.6.5]: Recall that t/>i, ..., \pr are the (not necessarily

distinct) restrictions to b0 of the roots in A0, and note that these are

nonnegative integral linear combinations of the a,'s. For all £ as in the

statement of the lemma and y = 1, ..., r, define P(i¡) E Z+ to be the number

of sequences nx, ..., nj of nonnegative integers such that £ = 2/= i n¡*Pi■

Note that Pr(£) is the original partition function P0(£). We show by induction

on y that /?(£) < (i(£) + l)J. This is clearly true if j = 1. Suppose it is true

for/ In the following expressions, the sums are over all | - n\pj+x (n G Z+)

which are nonnegative integral linear combinations of the a,'s. We have

<(,(o + i)wi) + iy = wo + i)7+1,
proving the desired formula.    Q.E.D.

It is now easy to complete the proof of Theorem 2.1. Suppose À, u G b* and

dim Homg(F\ V11) > 1. Taking a = 0 in Lemma 2.6, we get P0(n(ß — i>))

> 2" for all n G Z+. Since 2" > 0, n(/j. - p) is a nonnegative integral linear

combination oí ax, ..., <xp. Hence by Lemma 2.7, (nsQi — v) + l)r > 2" for

all « G Z+, an impossibility. This proves Theorem 2.1 and hence also

Theorem 1.1.    Q.E.D.

Remark. Here is Borho's simplification of our argument (see footnote 2):

After Lemma 2.3, we may omit everything (including the partition function)

except the proof of Lemma 2.6 through the statement "9LÖ • f(v) D 91Ö • g(v)

= 0", after which we add the following paragraph:

Writing f(v) = nx ■ v0 and g(v) = n2 ■ v0, where v0 is the canonical gener-

ator of V1 and nx, n2 G %q , we see that the algebra %q contains two disjoint

nonzero principal left ideals 91q nx and 9LÖ n2. But this contradicts Goldie's

result that any two nonzero elements of the universal enveloping algebra of a

finite-dimensional Lie algebra have a common nonzero left multiple. (The

simple Lesieur-Croisot proof of this "Ore condition" is given in [4, pp.

165-166].) This proves Theorem 2.1.
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