TWO COUNTEREXAMPLES IN SEMIGROUP THEORY ON HILBERT SPACE¹

PAUL R. CHERNOFF

ABSTRACT. There exist (C_0) semigroups $T_1(t)$, $T_2(t)$ on Hilbert space with the following properties: T_1 has a bounded generator and is uniformly bounded, but is not similar to a contraction semigroup. T_2 is uniformly bounded, and there exists no scalar α such that $e^{-\alpha t}T_2(t)$ is similar to a contraction semigroup.

1. Introduction. If $T(t) = e^{tA}$ is a (C_0) semigroup on a Banach space X, then there are real constants $M \ge 1$ and β such that $||T(t)|| \le Me^{\beta t}$. If $\beta = 0$ the semigroup is said to be uniformly bounded; if, in addition, M = 1 it is said to be contractive; while if M = 1 but $\beta \neq 0$ the semigroup is said to be quasicontractive. Clearly A generates a quasi-contractive semigroup if and only if there exists a real β such that $A - \beta I$ generates a contractive semigroup, namely $e^{-\beta t} T(t)$. If T(t) is a uniformly bounded semigroup, W. Feller observed that the space X can be renormed to make T(t) contractive; one defines the new norm by $|x| = \sup_{t \ge 0} ||T(t)x||$. Quite generally one can always renorm X by a similar device to make any given (C_0) semigroup quasi-contractive. However, if X is a Hilbert space, the new norm will usually not be a Hilbert norm. Indeed Packel [5] has given an example of a uniformly bounded semigroup $S(t) = e^{tA}$ on Hilbert space H such that there is no equivalent inner product on H which makes S(t) contractive. Equivalently, S(t) is not similar to a contraction semigroup: there is no bounded invertible operator C on H such that $CS(t)C^{-1}$ is a contraction semigroup. The generator A of Packel's semigroup is unbounded, and he asked whether there is an example of such a semigroup with a bounded generator. In §2 we shall present such an example. (We note that Kreiss [4] proved that this phenomenon cannot occur in finite dimensions.)

Goldstein [2], [3] has raised a related question: If T(t) is a (C_0) semigroup on Hilbert space H, is there an α such that the semigroup $e^{-\alpha t}T(t)$ is similar to a contraction semigroup on H? In other words, can H be endowed with an equivalent inner product which makes T(t) quasi-contractive? Goldstein's opinion was that the answer is no in general, and in §3 we shall give an example of a semigroup which verifies this conjecture. (The generator of such a semigroup must be unbounded, since if B is bounded we have $\|e^{tB}\| \leq e^{t\|B\|}$, so e^{tB} is quasi-contractive.)

Received by the editors June 25, 1975.

AMS (MOS) subject classifications (1970). Primary 47D05; Secondary 47B44.

¹ Research partially supported by N.S.F. grant GP-30798X.

2. In this section we exhibit a bounded operator B on a Hilbert space such that the semigroup e^{tB} is uniformly bounded but not similar to a contractive semigroup.

Let $S(t) = e^{tA}$ be Packel's semigroup on the Hilbert space H. Then $||S(t)|| \le M$ for all $t \ge 0$ and S(t) is not similar to a contraction semigroup on H. For each positive integer n define $A_n = A(I - A/n)^{-1}$; then A_n is a bounded operator and $||e^{tA_n}|| \le M$ for $t \ge 0$ (cf. the proof of the Hille-Yosida-Phillips theorem in [1, VIII.1.13]). Let $B_n = A_n/||A_n||$; then $||B_n|| = 1$ and $S_n(t) = e^{tB_n}$ is uniformly bounded by M. Finally, let $\Re = \Re \oplus H_n$ where each summand H_n is a copy of H, and let $H_n = H_n \oplus H_$

PROPOSITION. The semigroup e^{tB} is not similar to a contraction semigroup.

PROOF. Arguing by contradiction, suppose that e^{tB} is similar to a contraction semigroup. Then there exists an inner product $\langle \cdot, \cdot \rangle$ on \mathcal{K} , equivalent to the original inner product (\cdot, \cdot) , with respect to which e^{tB} is contractive.

Let $\langle \cdot, \cdot \rangle_n$ be the restriction of $\langle \cdot, \cdot \rangle$ to the summand H_n , which we identify with H. Then there is a constant k > 0 so that

(1)
$$k\langle x, x \rangle_n \leqslant (x, x) \leqslant k^{-1}\langle x, x \rangle_n$$

for all vectors x in H and all n. Now define a new inner product on H by

$$[x,y] = LIM_n \langle x,y \rangle_n$$

where LIM is a fixed Banach limit. Then inequality (1) holds for [x, x] as well, so that $[\cdot, \cdot]$ is equivalent to the original inner product on H.

Now by assumption e^{tB_n} is contractive with respect to the inner product $\langle \cdot, \cdot \rangle_n$, hence so is e^{tA_n} since A_n is just a positive scalar multiple of B_n . Also, the proof of the Hille-Yosida-Phillips theorem in [1] shows that for all x in $He^{tA_n}x$ converges to $e^{tA}x = S(t)x$. Accordingly,

$$[S(t)x, S(t)x] = \lim_{n} \langle e^{tA_n}x, e^{tA_n}x \rangle_n \leq \lim_{n} \langle x, x \rangle_n = [x, x].$$

That is, S(t) is contractive with respect to the inner product $[\cdot, \cdot]$, a contradiction. \square

3. In this section we present an example of a (C_0) semigroup T(t) on Hilbert space such that for no real α is $e^{-\alpha t} T(t)$ similar to a contraction semigroup. The construction makes use of the same machinery employed in §2.

As in §2, let S(t) be Packel's semigroup on H, and let \mathcal{K} be the direct sum of countably many copies of H. On the space \mathcal{K} define

(3)
$$T(t) = S(t) \oplus S(2t) \oplus S(3t) \oplus \cdots$$

PROPOSITION. T(t) is a uniformly bounded (C_0) semigroup and there does not exist an α such that $e^{-\alpha t} T(t)$ is similar to a contractive semigroup.

PROOF. On the contrary, suppose that for some α there is an equivalent inner product $\langle \cdot, \cdot \rangle$ on $\mathcal K$ with respect to which $e^{-\alpha t}T(t)$ is contractive. As in §2, let $\langle \cdot, \cdot \rangle_n$ be the restriction of $\langle \cdot, \cdot \rangle$ to the *n*th summand *H*. Then

inequalities (1) hold, and we define a new inner product $[\cdot, \cdot]$ on H by a Banach limit (2) as before.

Now $e^{-\alpha t}S(nt)$ is contractive with respect to $\langle \cdot, \cdot \rangle_n$. If we replace t by t/n it follows that $e^{-\alpha t/n}S(t)$ is also contractive with respect to $\langle \cdot, \cdot \rangle_n$. Applying LIM we deduce that S(t) is contractive with respect to the inner product $[\cdot, \cdot]$, which is again a contradiction. \square

REFERENCES

- 1. N. Dunford and J. T. Schwartz, *Linear operators*. I: General theory, Pure and Appl. Math., vol. 7, Interscience, New York, 1958. MR 22 #8302.
- 2. J. A. Goldstein, Contraction semigroups on Hilbert space, Notices Amer. Math. Soc. 21 (1974), A338-A339. Abstract #712-B6.
- 3. —, A problem concerning semigroups on Hilbert space, Tulane Univ., October, 1974 (preprint).
- 4. H.-O. Kreiss, Über Matrizen die beschränkte Halbgruppen erzeugen, Math. Scand. 7 (1959), 71-80.
- 5. E. W. Packel, A semigroup analogue of Foguel's counterexample, Proc. Amer. Math. Soc. 21 (1969), 240-244. MR 38 #6400.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA, BERKELEY, CALIFORNIA 94720