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TWO COUNTEREXAMPLES IN SEMIGROUP
THEORY ON HILBERT SPACE1

PAUL R. CHERNOFF

Abstract. There exist (C0) semigroups Tx(i), T2(t) on Hubert space with

the following properties: 7f has a bounded generator and is uniformly

bounded, but is not similar to a contraction semigroup. T2 is uniformly

bounded, and there exists no scalar a such that e~"'T2(t) is similar to a

contraction semigroup.

1. Introduction. If T(t) = e'A is a (C0) semigroup on a Banach space X, then

there are real constants M > 1 and ß such that ||T(r)|| < Meßl. If ß = 0 the

semigroup is said to be uniformly bounded; if, in addition, M = 1 it is said

to be contractive; while if M = 1 but ß ¥= 0 the semigroup is said to be quasi-

contractive. Clearly A generates a quasi-contractive semigroup if and only if

there exists a real ß such that A - ßl generates a contractive semigroup,

namely e~ß' T(t). If T(t) is a uniformly bounded semigroup, W. Feller observed

that the space X can be renormed to make T(t) contractive; one defines the

new norm by \x\ = sup(>0||r(i)x||. Quite generally one can always renorm X

by a similar device to make any given (C0) semigroup quasi-contractive.

However, if X is a Hubert space, the new norm will usually not be a Hubert

norm. Indeed Packel [5] has given an example of a uniformly bounded

semigroup S(t) = e,A on Hilbert space 77 such that there is no equivalent

inner product on 77 which makes S(t) contractive. Equivalently, S(t) is not

similar to a contraction semigroup: there is no bounded invertible operator C

on 77 such that CS(t)C~x is a contraction semigroup. The generator A of

Packel's semigroup is unbounded, and he asked whether there is an example

of such a semigroup with a bounded generator. In §2 we shall present such an

example. (We note that Kreiss [4] proved that this phenomenon cannot occur

in finite dimensions.)

Goldstein [2], [3] has raised a related question: If T(t) is a (C0) semigroup

on Hilbert space 77, is there an a such that the semigroup e~°"T(t) is similar

to a contraction semigroup on 77? In other words, can 77 be endowed with an

equivalent inner product which makes T(t) quasi-contractive? Goldstein's

opinion was that the answer is no in general, and in §3 we shall give an

example of a semigroup which verifies this conjecture. (The generator of such

a semigroup must be unbounded, since if B is bounded we have ||e'B||

< e'"B\ so e'B is quasi-contractive.)

-

Received by the editors June 25, 1975.

AMS (MOS) subject classifications (1970). Primary 47D05; Secondary 47B44.

1 Research partially supported by N.S.F. grant GP-30798X.
© American Mathematical Society 1976

253



254 P. R. CHERNOFF

2. In this section we exhibit a bounded operator B on a Hilbert space such

that the semigroup e'B is uniformly bounded but not similar to a contractive

semigroup.

Let S(t) = e'A be Packel's semigroup on the Hilbert space H. Then

\\S(t)\\ < M for all t > 0 and S(t) is not similar to a contraction semigroup

on H. For each positive integer « define An = A(I — A/n)~ ; then An is a

bounded operator and ||*?M"|| < M for t > 0 (cf. the proof of the Hille-

Yosida-Phillips theorem in [1, VIII.1.13]). Let B„ = Aj\\An\\; then ||J?J|
= 1 and Sn(t) = etB- is uniformly bounded by M. Finally, let % = 2 ®Hn

where each summand Hn is a copy of H, and let B = Bx © 52 © #3 ® ' ' ' on

X Then ||2?|| = 1 and ||e'B|| < M as operators on X

Proposition. 77ie semigroup e,B is not similar to a contraction semigroup.

Proof. Arguing by contradiction, suppose that etB is similar to a contrac-

tion semigroup. Then there exists an inner product (■, •) on X equivalent to

the original inner product (•, •), with respect to which e'B is contractive.

Let <•, •>„ be the restriction of <•, •) to the summand Hn, which we identify

with H. Then there is a constant k > 0 so that

(1) k{x,x\ < (x,x) < k~x{x,x\

for all vectors x in H and all «. Now define a new inner product on H by

(2) [x,y] = LIM„ (x,y)n

where LIM is a fixed Banach limit. Then inequality (1) holds for [x,x] as well,

so that [•, •] is equivalent to the original inner product on H.

Now by assumption etB" is contractive with respect to the inner product

(•, •)„, hence so is e'A" since An is just a positive scalar multiple of Bn. Also,

the proof of the Hille-Yosida-Phillips theorem in [1] shows that for all x in

He'A"x converges to e'Ax = S(t)x. Accordingly,

[S(t)x,S(t)x] = LMn(e,A"x,elA"xX < LIM„ <x,x>„ = [x,x].

That is, S(t) is contractive with respect to the inner product [•, •], a contradic-

tion.    D

3. In this section we present an example of a (C0) semigroup T(t) on Hilbert

space such that for no real a is e~°"T(t) similar to a contraction semigroup.

The construction makes use of the same machinery employed in §2.

As in §2, let S(t) be Packel's semigroup on H, and let X be the direct sum

of countably many copies of H. On the space % define

(3) T(t) = S(t) © S(2t) © S(3t) © • • •.

Proposition. 71(7) is a uniformly bounded (C0) semigroup and there does not

exist an a such that e~at T(t) is similar to a contractive semigroup.

Proof. On the contrary, suppose that for some a there is an equivalent

inner product <•, •> on % with respect to which e~°" T(t) is contractive. As in

§2, let <•, •)„ be the restriction  of  (•, •>  to the «th summand 77.  Then
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inequalities (1) hold, and we define a new inner product [•, •] on 77 by a Banach

limit (2) as before.

Now e~°"S(nt) is contractive with respect to <•, •>„. If we replace t by t/n it

follows that e~at'nS(t) is also contractive with respect to <•, •>„. Applying LIM

we deduce that S(t) is contractive with respect to the inner product [•, •], which

is again a contradiction.    □
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