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POSITIVELY CURVED TOTALLY REAL

MINIMAL SUBMANIFOLDS IMMERSED

IN A COMPLEX PROJECTIVE SPACE

KOICHI OGIUE1

Abstract. A sufficient condition for a complete totally real minimal

submanifold immersed in a complex projective space to be totally geodesic

is given in terms of sectional curvature.

1. Statement of result. Let P„(C) be an «-dimensional complex projective

space with the Fubini-Study metric of constant holomorphic sectional curva-

ture c, and let M be an «-dimensional complete totally real minimal subman-

ifold immersed in Pn(C).

The purpose of this paper is to prove

Theorem. If the sectional curvature of M is greater than (n — 2)c/4(2n — 1),

then M is totally geodesic.

The result for n = 2 was proved by S. T. Yau [3].

2. Basic lemmas. We use the same notation and terminologies as in [1] unless

otherwise stated. It was proved in [1] that the second fundamental form of the

immersion satisfies

ÍA||a||2=||V'of +    2    (hfhtfRlijk + hfhfRlkjk)
*• i, i,k,l,m

(0 .
+ 9 2 tr (A¡*Aj*-Aj,Ai.)2 + l\\o\\2.

On the one hand, using the equation of Gauss we obtain

2        (by    «$   R,yk  +  hy    hy    R¡kjk)
i,j,k,l,m

(2) .
nc        7        1 7 7

= ~t\\(I\\   + 9 2 t^(A¡*Aj* - Aj*A¡*)   — 2 (tr AjtAj*) .
4 L ¡J Uj

On the other hand, Yau's idea in [4] can be applied as follows: For each m,

let «[",..., hm be the eigenvalues of Am*. Then we have
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2   («,y  Ki Riijk + Kj  hm Rlkjk) — 2 \bmWk Rkllk + (hm) R¡k¡k]
i,j,k,l i,k

= ï2 («r - hk) Rikik.
i,k

Therefore if the sectional curvature of M is greater than 8, we have

2   {hfh$Rm + hfhfRlkjk) > \ 2 («- - hf?8
i,j,k,l *• i,k

= nd~2(h^)2 = nSttA^,
i

from which it follows that

(3) 2    (hfh^Rl¡jk + hfhfRlkjk)>n8\\a\\2.
ij,k,l,m

From (1), (2) and (3) we have

Lemma 1. // the sectional curvature of M is greater than 8, then

¿A||of > llV'of + (1 + a)«ó1|a||2 - ^-c\\o\\2

+ —^2 \.r(A¡*Aj* - Aj*A,*)2 + a 2 (tiApAj,)2

for a > — 1.

The following lemma is purely algebraic.

Lemma 2. «"' ||a||4 < 2¿j (tr A^Aj*)2 < ||a||4.

3.  Proof of theorem.  Since  the  symmetric  («,  «)-matrix (trA¡*A¡»)  is

covariant for the change of basis, for a suitable choice of basis we may assume

that

(4) txAt*Aj* = 0       for i #/.

An algebraic lemma of Chern, doCarmo and Kobayashi (Lemma 1 in [2])

implies that

2 tr(^,-.^;. - Aj*A¡*)2 > -2 2 trA2*UA2*

= -2\\a\\4 + 2 2 (trA2,)2.
i

From Lemma 1, (4) and (5), it follows that

¿A||of > (1 + a)n8\\o\\2 - ^ic||of - (1 - a)||a||4 + 2 (tr,42.)2

for-1 < a < 1.

This, together with Lemma 2 and (4), implies that
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\A||a||2 > {(1 + a)n8 - "^c}||of + {*- - (1 - a)}||a||4.

In particular, putting a = 1 - \/n, we obtain

ÍA||a||2>{(2«-l)o-^c}||a||2,

from which the theorem follows.
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