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Abstract. Stable cohomotopy groups of Eilenberg-Mac Lane spectra of

finite groups are shown to be trivial. This implies that the stable homotopy

category, which is large enough to represent ordinary cohomology theory,

cannot be self-dual. It can also be interpreted as an evidence to support

Freyd's generating hypothesis and a proof of a stable version of a conjecture

of D. Sullivan.

1. Introduction and statement of main results.

1.1 Introduction. In this note we determine the stable cohomotopy groups

m*(K(G)) of Eilenberg-Mac Lane spectra K(G) and the stable mapping

groups {K(G), F}+ for a CW-complex Y of finite type. There are some

interesting interpretations of this computation. The first is about Spanier-

Whitehead duality. The second is related to Freyd's generating hypothesis and

a strong version of Barratt's conjecture (a weak version was solved recently in

[10]). The third is related to a conjecture of D. Sullivan.

While this paper was in its final revision, the referee informed the author

that the first theorem below can also be obtained from Margolis' result which

appears in Proc. Amer. Math. Soc. 43 (1974), 409. Therefore we would like to

offer the following remarks. From the statement of Margolis' result it appears

that his result is more general than Theorem 3.2. However, from the remarks

after Theorem 3.1 it is clear that our method can obtain Margolis' result also.

Therefore it seems to this author that our method is an interesting, perhaps

more general, alternative approach to his result. The backbone of our

approach is to prove the edge isomorphism theorem without the information

on the convergence of spectral sequences. This is quite useful because, in

general, the convergence problem of a spectral sequence is harder than its

construction. Finally the author would like to thank the referee for his

valuable suggestions which brought this paper into the present form.

1.2 Statement of main results. We will state some of our results here. Let 2

be Boardman's stable category and ~Zh be the stable homotopy category. Let

K(G) be the Eilenberg-Mac Lane spectrum of an abelian group G and 5 be

the 0-sphere spectrum. Let {X, Y}^ he the stable homotopy classes of maps of

all degrees from X to Y.

3.2 Theorem. [K(Zp\ S\ = 0.
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According to [7, Proposition 9.4] Freyd's generating hypothesis implies that

there is no minimal ideal in the stable homotopy ring m* of spheres, or

equivalently that Hom^Z^,^) = 0. On the other hand, the strong version of

Barratt's conjecture (i.e., the p-primary component of positive stems is a

nilpotent ideal of tt*) implies the opposite. Hence, the proof or disproof of the

conjecture Hom^Z^w*) = 0 is quite an interesting problem. Although our

result is inconclusive, nevertheless, it says that no element of Hom„.t(Z.,rr*)

corresponds to a geometric map K(Zp) —> S°. Thus our result can be regarded

as some evidence to support Freyd's generating hypothesis.

3.3 Corollary. Spanier- Whitehead duality cannot be extended to the homo-

topy category 2A.

In [5] Boardman has shown that a stable homotopy category cannot be self-

dual if it allows the usual homotopy procedures. Our computations show,

more specifically, that there is no dual object for Eilenberg-Mac Lane

spectrum K(Z ). This is interesting because two major motivations for

developing stable homotopy categories are Spanier-Whitehead duality and the

Adams spectral sequence. Roughly, our results imply that if the stable

homotopy category is extended so as to admit the Adams spectral sequence

(which requires the existence of Eilenberg-Mac Lane spectra), then the

extended category can no longer be self-dual.

3.4 Corollary. {K(Zp),X}* = Ofor any finite spectrum X. Or equivalently,

any stable essential map from K(Z ) is incompressible.

D. Sullivan conjectured that there is no essential map from RPœ =

K(Z2,1) to any finite CW-complex. Our results can be regarded as a stable

version of Sullivan's conjecture.

3.6 Theorem.

lv(7\ yoi        /Extz(g,Z)     if* = -\,

{K(Z),X)*-^Q if**-\.

4.2 Theorem. Let Y be a CW-complex with finite skeleton in each dimension.

Then {K(G), Y}* = Extz(G ®z Q,H.+X(Y,Z)).

This theorem implies all the previous results. However, since they are the

major motivations of this paper, the stress of the paper still will be on them.

In the whole paper we will not distinguish the notations between a spectrum

and its homotopy type, a map and its stable homotopy class. Zp will mean the

ring of integers mod p, and H*(X) will always mean Zp coefficients.

2. Reformulation of the Adams spectral sequence. In the classical formulation

of the Adams spectral sequence, one requires that the second argument be

finite dimensional. This condition is used to ensure the convergence. We will

waive this condition here and describe an obstruction group for the conver-

gence.

2.1 Theorem (ASS). Let Y be a spectrum with finite skeleton at each

dimension, and X be an arbitrary spectrum. Then there is a spectral sequence E*'*

such that:
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(i) E2'* = ExQ*(H*(Y),H*(X)), where & is the Steenrod algebra mod p.

(ii) E^* is fitted into the short exact sequence 0 -* FS/F s+l Fs'"

0 where the filtration Fs of [X, Y)^ and the bigraded group G*'* will be

explained below. Moreover, the spectral sequence together with statements (i) and

(ii) are natural with respect to X and Y.

Let us recall that the ASS arises from the following Adams tower (see [1] for

notations and construction)

Y = Mn
-M,

C) /o /,

Kn Ki

M2 «-

K,

M.
s+ 1

M,s+X

[ i

K. Ks+l

where K¡ are Eilenberg-Mac Lane objects and the sequences

M, fs
Ks± Ms+X J¿* SMS M,

are exact triangles (note that Ps is the composition of qs in [1] and desuspen-

sion). By applying the functor [X, —}„, to the tower, we get an exact couple

which gives the ASS. The filtration is defined by

F'-lm[{X,»4X-*{X,Y)t]

and the obstruction group G*'* is defined by

G* - (Ker^+1.) n ^^ Im[{*,Mi+r}, {X,M5j+ij* >)

where Ps*: {X,MS}+ -» {X,Ms_x}# is induced by Ps: Ms -» Ms_x.

Statement (i) is standard: statement (ii) follows from Eckman-Hilton's

theory of exact couples (see [6, Theorem 4.16, p. 59]).

If the spectrum X is finite dimensional, then one can show that /J* are

monomorphisms on

Is = nim[{X,Ms+X^{X,MX]
r

and, hence, G*'* = 0. This gives the usual convergent ASS.

Following the notation of §5, let us write Mx = limsMs.

2.2 Proposition. Let Y be as in 2.1. Then if H*(Y) is free over the algebra

generated by 1 and Bockstein operator, then Mx =s¡ * .

Proof. From [1, §4, Remark 4 after Lemma 3], we get mq(Ms) = 0 for all

sufficiently large s. Then by dual of Milnor's Lemma (Theorem 5.1), we have

m*(Mx) = 0, i.e., Mx^*.

This proposition can be strengthened if we use the notion of .E-completion

[3]. Let Lp be the Moore spectrum of p-adic integers Zp. Then X A L^ is the

¿■-completion of X, where E is the ordinary homology theory with coefficient

Zp and .Y is a spectrum with finite skeletons at each dimension. Note that

H*(X A L) = H*(X). Hence, by smashing L   to the tower (*) of §2, we
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still get the same ASS. Write Mœ = \ims(Ms A Lp). Then from the arguments

in the proof of [3, Theorem 15.1 (iii), p. 250], we have the following:

2.3 Proposition. Let Y be as in 2.1. Then Mx as * .

3. Stable cohomotopy groups of Eilenberg-Mac Lane spectra. This section is

the main body of the paper. Although the main theorems are special cases of

§4, since they are the major motivation of this paper, we give complete proofs

here. However, we have arranged the proofs in such a way that they can easily

be adopted for general results in §4. In the proofs we have avoided the use of

the notion of £-completion [3], however, it seems necessary for the results in

§4.

3.1. Theorem. [K(Z ), L }* = 0, where Lp is the Moore spectrum of Zp.

Proof. Put X — K(Z ) into Theorem 2.1. Then, by self-injectiveness of

H*(K(Zp)) = &(see [2], [9]), we have

£|'* = Exts¿*.(H*(Y),&) = 0,       s > 0.

Therefore, we have 7s¿* = 0, s > 0. Moreover from Theorem 2.1, we have a

one-to-one map (since G5'* = 0)

(1) P*: Is -> 7i_1

(2) 0 -> F°/Fx -* ££* -» 0,

and

(3) [K(Zp), Y)* = F° D Fx = F2 = ■ ■ ■ = F* = ■ ■ ■.

In other words, the length of the filtration on {7í"(Zp), Y)* is á 2. In particular,

if we choose Y = Ms, where the Ms are those spectra in Adams tower (*) of

§2, the filtration on {K(Zp), Ms)* is also of finite length. Hence, the following

intersection is, in fact, a finite intersection.

Is = D Im [{K(Zp),Ms+r}* -» {K(Zp),Ms}*]

= lm[{K(Zp),Ms+x}* -* {K(Zp),Ms}*].

Therefore the map 7J induces an onto map

(4) P • Is -* 7i_1

Combining (1) and (4), we have the following isomorphisms:

It is obvious from the definition of inverse limit that lims{K(Zp),Ms)*

= limí7í. Moreover, from the dual of Milnor's Lemma (see §5 below),

0 -* limx{SK(Zp),Ms}* -* {K(Zp),Mj* ~* \im{K(Zp),Ms}* -4 0

i 0s
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(Mx ~ * by Proposition 2.2), we get

0 = lim{K(Zp),MX = F for all s.
s

In particular, Io — 0. Then from (2) and (3), we have

{K(Zp),Y}^F0^E^^E^',

i.e.

(5) {K(Zp), Y}+ = Hom&(H*(Y),&).

If we take Y = Lp = S° Up ex and note that H*(Lp) is an S-module with

nonvanishing groups only at degree 0 and 1, we see immediately that there is

no non trivial 6E-map of H*(Lp) -* &. That is,

Wom&(H*(Lp),&) - {K(Zp),Lp}* = 0.

Therefore, we have the theorem.

Remark. The isomorphism (5) proves a special case of Margolis' result

(Proc. Amer. Math. Soc. 43 (1974), 409). For general Y, we proceed as follows:

Using 2.3 to replace 2.2, we can proceed as in Theorem 3.1 to get

(5')   (K(Zp), Y A Lp}t at Hom|(/7*(y A Lp),â) = Hom|(//*(y),â>).

So the only thing left to be proved is that {K(Zp), Y A Lp}^ = (K(Zp), T}*.

For this let us consider the following commutative diagram:

[K(Zp), Y}* 4» {K(Zp), í%-¿* {K(Zp), Y A L,,},,, -»

4 pi I = I q,

[K(Zp), y}, -> (K(Zp), Y}J^{K(Zp), Y A Lp,^ -*

where i is the identity map and q, is the map induced by the natural projection

Z„, —» Z„,_i. Since each group is a Z. vector space, we have
p p p V

0 -» [K(Zp), 7}+ ^ [K(Zp), Y A Lpl}+ -» (K(Zp), Y),_x - 0

1 = i q, 10
0 - {K(Zp), Y}* -^ (K(Zp), Y A Lp,.^ - [K(Zp), F},_, - 0

From this diagram one sees that the sequence of maps q, satisfies Mittag-

Leffler condition (note that as Z -vector spaces the sequences above split and

q, maps Im i¡ -* Im it_x isomorphically and the complement to zero). By the

dual of Milnor's Lemma (5.1) we have

{K(Zp), Y A £ }, = lim{JC(Z,), Y A L,,},.

I

Moreover the injections /', induce an isomorphism

[K(Zp), Y}* = limi^Z,), F A L,,}* = {K(Zp), Y A Lp}*.

This proves the remark.r
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Next is our main theorem.

3.2 Theorem. {K(Zp),S0}* = 0.

Proof. Note that {K(Zp),S°}* is a Z^-vector space, therefore the Puppe

sequence of S° -^ S° —» L  reduces to

0 -» {K(Zp),s\ r* {K(Zp),Lp}* -» [K(Zp),s\ -* 0.
o

Now the main theorem follows immediately from Theorem 3.1 above.

3.3 Corollary. Spanier-Whitehead duality cannot be extended to the stable

homotopy category 2A.

Proof. Let DX be the dual of X. Then Spanier-Whitehead duality would
give us

[K(Zp),S\^{DS°,DK(Zp)}*.

But DS° = S° and, by Theorem 3.2, we have

tr*(DK(Zp)) = {S°,DK(Zp)}* = {K(Zp),S\ = 0.

That is, DK(Zp) as * . This shows that DK(Zp) cannot exist.

3.4 Corollary. {K(Zp),X}* = Ofor any finite spectrum X.

Proof. Since X can be obtained by attaching cells in a finite number of

steps by using the Puppe sequence and 3.2 at each step, we have this corollary,

3.5 Corollary. {K(T), S0}* = Ofor any torsion abelian group T.

Proof. First note that T can be decomposed into a direct sum of its p-

primary subgroups and K(T) into the corresponding wedge. Thus one need

only prove the case when T is a p-primary torsion group. Let Tn be the

subgroup of elements x in T such that p"x = 0. Then we have an increasing

sequence of groups. 7fC72'C---C7^C---cr and a corresponding

sequence for K(Tn) 's. By Milnor's Lemma, the corollary is reduced to proving

{K(Tn),S0}* = 0. For this, we induct on n by the exact triangles 7i"(7^)

-* K(T„+X) -> K(T„+X/Tn) with the observations that T„+x/T„ and Tx are direct

sums of copies of Z .

3.6 Theorem.

Proof. Consider the sequence K(Z) -» K(Q) -» K(Q/Z). Then the Puppe

sequence and Corollary 3.5 give {K(Z),S0}* Sat {7<(ß),,S0}*- Note that K(Q)

is a Moore spectrum. Then by universal coefficient theorem [8, Chapter 5, p.

30] for stable homotopy groups, we have {K(Q),S°}_X = Extz(g,Z) and zero

in all other degrees. This proves the theorem.

4. Further results. In this section, we extend our computations to more

general situations. Recall that a CW-complex can be regarded as an object in
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2, hence we can consider the stable maps from a spectrum to a CW-complex.

First we prove

4.1 Theorem. Let Y be a CW-complex. Then Uomâ(H*(Y),&) = 0.

Proof. Let y E H*(Y). Then from [11, pp. 1 and 76], P'y = 0 if 2/

> dim y [or, Sq 'y = 0 if /' > dim y]. On the other hand, for any

a E &, P'a ¥= 0 [or Sq'a # 0] for sufficiently large i. Therefore there are no

nontrivial S-maps from H*(Y) to â.

4.2 Theorem. Let Y be a CW-complex with finite skeleton at each dimension,

and G be an abelian group. Then

{K(G),Y)t = Extz(G®zQ,H.+x(Y,Z)).

Proof. (1) From 4.1 and the remark of 3.1, we have [K(Zp), Y)^ = 0.

(2) Following the pattern of arguments in 3.5, we have [K(T), Y}* = 0 for

any torsion group T.

(3) Let T be the torsion subgroup of G. Then G/T is a torsion free abelian

group, and hence we have an exact triangle

K(G/T ®z Z) -» K(G/T ®z Q) — K(G/T ®z Q/Z).

By the result in (2), we have (K(G/T), Y}* at [K(G/T ®z Q), y}+. Observe
that G/T ®ZQ = G ®ZQ, so we have

[K(G), y}+ *t {K(G/T), y}+ = [K(G ®z Q), Y}*.

(4) Next note that K(G ®z Q) is a Moore spectrum; hence by universal

coefficient theorem for homotopy groups we have

[K(G ®z Q), Y}q at Extz(G ®z Ô,vT9+1(y)).

From Hurewicz isomorphism theorem, we see that the kernel and cokernel of

the Hurewicz homomorphism m*(Y) —> H+(Y;Z) are finitely generated tor-

sion (= finite) groups. Since Extz(G ®z Q, T) = 0 for any finite group T, we

have

Extz(G®zß,77(?+1(y)) = Extz(G®z Q,Hq+x(Y;Z)).

Thus we have

{K(G), y}» - {K(G ®z Q), y}+ = Extz(G ®z Q,H,+X(Y;Z)).

This proves the theorem.

5. Dual of Milnor's Lemma. In 2 the direct product may not exist, hence the

inverse limit in the strict sense usually does not exist. In this note, we will

construct "homotopy inverse limits" which will be suitable for our purpose.

5.1 Theorem. For a given sequence of spectra in 2,

^xn^xn_x->->xx^x0.

We construct a spectrum Xx with maps qn : Xx -> X„ such that qn_ \ — fn • qn
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and a short exact sequence

0 -» \imx{SY,Xn}* -> {Y,XX}* -* lim{Y,X„)* -» 0

natural in Y.

The spectrum Aîim will be called the homotopy inverse limit, lim Xn, of the

sequence, and the short exact sequence will be called the duaí~of Milnor's

Lemma.

Proof. Let Y\.™=oXn, ILi°=i Xn be the direct products. According to [4,

C.22] they exist up to homotopy types. Let

OO 00 00

/= n/„: n *„- n x„
n=\ n=l n = 0

be the product of maps; it also exists only up to homotopy type.

Let / be the composition

00 00 00

/: n xn -** n xn -4 n xn
n=0 n = \ n=0

where q is the natural projection. Let X be the mapping cone of the map 1 — /,

which is the difference of identity and/. Then the Puppe sequence of the exact

triangle

(6)

gives

00 ,     7        °°

n=0 «=0

O-/)

n xn
n=0

*- U n xn \
1      n = 0        K

n {y, xn]
n=0

w

ñ tr.xHï<
n = 0

{Y, X„}*

Then from the definitions of lim and lim1, we get

0 -*. limx{SY,Xn}* -> {Y,XX}* * lim{T,A;}+ ^ 0.

Next we need to construct qn : Xx -^ Xn. Let pn : Il^°=o X„ -* Xn be the

projection and write qn = pn ■ 8 where 5 is the coboundary operator of (6)

above, we have pn • f st fn+x ■ pn+x and (I - f)8 ^ * . Thus we have

In - Pn ■ ô — Pn ' / ' ° — fn+\ ' Pn+\ ' S ~ fn+\ ' °«+l •

This shows that the qn are the desired maps. Thus we have proved the theorem.
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Remark. If Xn had arisen from the Postnikov tower of some spectrum, say

y, then Xqq sí Y. This follows immediately from the dual of Milnor's Lemma

and the fact that lim'^A;) = 0.
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