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A NOTE ON THE EQUATION x2 = yq + 1

E. Z. CHEIN

Abstract.    It is proved here that the equation x2 = yq + 1 has no solution

in natural numbers x, y for which q is a prime > 3.

It was shown by Chao Ko [1], [2] that the equation x2 — yq + 1 has no

solution in natural numbers x, y where q is a prime > 3.

It is the purpose of this note to give a simpler proof of Ko Chao's result.

Throughout this note all symbols denote natural numbers, and notation

(a, b) = g means g is the greatest common divisor of a and b.

Auxiliary lemmas. Lemmas 1 and 2 are collections of some well-known

results. The third is due to Nagell [3].

Lemma 1. If ' q is an odd prime and (x,y) = 1, then x + y divides xq + yq and

(x + y, (xq + yq)/(x + y)) = q or 1 according as x + y is divisible by q or not.

Lemma 2. All the primitive solutions of equation x2 + y2 = z2 for which y is

an even number are given by the formulas

x = a2 - b2,   y = 2ab   and   z = a2 + b2       (a > b).

Lemma 3. If x2 = yq + 1 with qprime and x > l,y > 1, then 2\y and q\x.

Principal result.

Theorem. Let q be aprime > 3. The equation x2 = yq + 1 has no solution in

natural numbers.

Proof. Let us assume now that there exist x, y and a prime q for which

x2 = yq + 1.

It follows from Lemma 3 that q\x and 2\y. Since 2 | x, by Lemma 3 we have

(x + l,x - 1) = 2. Thus either
(I) x + 1 = 2q-xyq,   x - 1 = 2yq2, or

(II) x+ I =2yq2,    x - 1 = 2q~xy\

holds, where y = 2yxy2, 2 \y2 and (y\,y2) = 1.

Case I. Suppose x + 1 = 2q~xyq and x — 1 = 2y2. It follows from y\

= 2q~2yqx - 1 that

(O (y\)q + (W = (A + 2)2 = ((x + 3)/2)2.

Since q\x and ?>3we see q\(x + 3)/2; thus
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(y\ + 2yx,((y22y + (2yx)")/(y2 + 2yx)) = 1,

by Lemma 3.

In view of (1), it follows that j^ + 2yx = h2 where h\(x + 3)/2. This gives

(2) (hy1)2+y2-(y\+yx)2.

Since (y\,y2) = 1, this implies (hy2,yx) = 1. We observe that sincey2 is odd,

so is h; then 4\h2 — y2 so that 2\yx.

By Lemma 2, the solutions of (2) are given by

hy2 = a2 - b2,   yx = 2ab   and   y\ + yx = a2 + b2       (a > b).

Therefore, (a — b) = (y\ + yx ) - yx = y\ which implies y2 = a — b, and so

yx - y2 = 2ab — (a — b) = a(2b - 1) + b > 0, hence yx > y2. However, y\

= 2q~ y\ — 1 > yx implies y2 > yx, and this is impossible. This completes

Case I.
Case II. The proof for this case proceeds similarly. It can be easily seen from

(y\)q - (2yi)q = (y\ - 2)2 = i(x - 3)/2)2 follows y\ - 2yx = h2 where

h\ix — 3)/2; this implies (hy2)   + y2 = (y\ — yx)  so that Lemma 2 gives

hy\ = a2 - b2,   yx = 2ab,   y\- yx = a2 + b2       (a > b).

Hence yx - y2 = 2ab - (a + b) = (a - \)(b - 1) + (ab - 1) > 0 which is

impossible because of y\ = 2q~2y\ + 1 > y\. This completes the proof of our

Theorem.
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