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ANALYTIC EXPRESSIONS FOR CONTINUED FRACTIONS
OVER A VECTOR SPACE

F. A. ROACH

Abstract. In previous papers, we considered continued fractions obtained

from a type of "geometric reciprocal". In this paper we develop certain

"analytical" formulas for such continued fractions and, by using these

formulas, obtain results analogous to certain classical theorems for ordinary

continued fractions.

1. Introduction. Throughout this paper, we suppose that 5 is a real inner

product space and that « is a point of S with unit norm. As in [1] and [2], for

each point z of S, we denote the point 2((z, u))u — z by z and the point

z/||z||2 by 1/z. (We assume that there is adjoined to S a "point at infinity".)

If S is one of El, E2, £"*, and Es and u is the point with unit norm and

first coordinate 1, the expression

n n —Í—    — i
1 ' ' l/x +   -x + (l/x) - y

reduces to the product xyx for real numbers, complex numbers, quaternions,

and Cayley numbers, respectively. With this in mind, when y = u we denote

the value of (1.1) by x2. If a and b are points of S and a is not a scalar

multiple of u, the symbol ab denotes the value of (1.1) when^ = b and x is

one of the points whose square is a. (If a is not a scalar multiple of u, there

are just two points x-one the negative of the other-such that x2 = a. See (2.1)

below.) If a is some scalar times u, then ab denotes that scalar times b.

Suppose that each one of ax, a2, a3, . . . , b0, bx, b2, . . . is a point of S. Let

T0(z) denote b0 + z and, for n = 1, 2, 3, ... , let Tn(z) denote an(\/(bn + z)).

With the convention that x/y denotes x(\/y),

(1.2) T0TxT2...TAz) = b0+a¿      ^ +J^.
\ ¿ n

In this paper, we are concerned with the continued fraction generated by the

transformations T0, Tx, T2, . . . ,  i.e., the continued fraction

a,       a-,      a-.

For z = 0, we refer to the value of (1.2) as the nth approximant of (1.3).

If each an has value u, then (1.3) is the type of continued fraction

considered in [1]. In [2], the transformations used to obtain the continued
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fractions were formed somewhat differently. For a sequence c,, c2, c3, .

we defined a transformation Sn by

$,(*)-
c„     -cn +(1/0_(1/c2)_z       ' c«     >

u if c = 0.

Since -a + 1/S„(z) = -u + c2(l/c2 + z) = c2z (see §2 below), Sn(z) can

be written as l/(w + c**). If we set b0 = 0, a, = u, bn = u, « = 1, 2, 3, . . .,

and an+x = c2, « = 1,  2,  3, . . . ,   then the «th approximant of (1.3) is

SXS2 ■ ■ ■ S„(u). Thus (1.3) includes the continued fractions of [2].

2. Properties of the operation. The following Lemma lists the main proper-

ties of the operation defined above. We will have occasion to make use of

these properties in the last two sections.

Lemma.If each one of x, y, and z is a point of S, then

(a) x(y + z) = xy + xz;

(b) xu = ux = x;

(c) ifx^O, x(l/x) = (l/x)x = u and x[(\/x)y] = [x(l/x)]y;

(d) ifx^Oandy^O, l/(xy) = (\/x)(\/y);

(c)|MI=W \\y\[,and
(f) if c is a real number, c(xy) = (cx)y = x(cy).

This result is readily established with the aid of the following identity: for

every x in 5 and y in S,

(2.1) x2y = 2((x,y))x-\\xfy.

To see that this identity holds true, notice that

and hence l/((l/x) - y) is the product of (x - ^||x||2)||x||2 times the recipro-

cal of the right-hand side of this expression. Hence

1 1
-x + (l/x)->>

_ (1 - 2((x,y)) +||x||2||jf )(2((x,>Q)x- -l|x||2||^||2x - ||x||2y)

^((x^^x-llxfll^fx-Hxll^l2
By using the properties of the inner product, the denominator of the right-

hand side of this expression can be written so as to obtain

J_ 1 m 2((x,jQ)x-!|x||2||>fx--||x||2y

-x + (1/x) - y WIM!2

But ||2((x,7))x - Hxlj2^! = ll^ll2!!^!!- Hence the right-hand side of this expres-

sion is l/[2((x,y))x - x^y] - 1/x. From this, (2.1) follows.

In general, we do not have (y + z)x = yx + zx, x(yz) = (xy)z, and

xy = yx. To see this, we may simply consider appropriate examples in £"*

with u = (1, 0, 0, 0). In this case, x_v may be computed in terms of the
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quaternion product so that examples are easily obtained.

Remark. As was indicated, in certain cases x^y is a product of the form

xyx. When S is finite dimensional, the cases mentioned are essentially the

only ones. In fact, if we suppose that 5 is finite dimensional and • is a (not

necessarily associative) multiplication on S which is distributive and has the

property that if x is in S, y is in S, and c is a real number, then c(x • y)

= (ex) ■ y = x ■ (cy) and if, for every x in S and y in S, x^y = (x ■ y) ■ x, then

(S, •) is a division algebra and hence 5 is either El, E2, EA, or Es.

3. Equivalence transformations and some basic formulas. In this section we

give a result which allows us to alter the form of (1.3). We also give some

formulas which are closely analogous to the fundamental recurrence formulas

for ordinary continued fractions (see [3, pp. 15-20]). At times, the parenthesis

indicating a certain association will be omitted with the understanding that

the association is from the right to the left. Thus xyz denotes x(yz), xyzw

denotes x(y(zw)), etc. As before, x/y denotes x(\/y).

Theorem 1. Suppose that for q = 1, 2, 3, . . . and p = 1, 2, . . . , q, cpq is a

point of S distinct from 0. Then, for n = 1, 2, 3, . . . , T0TXT2 ■ ■ ■ Tn(Q)-the

nth approximant of (\.3)-is equal to

öiC,, c„_,„_,iLn

™ »0+7X + --.+
CYA + • • • + cnn ■ ■ ■ cXnbn

By using part (d) of the Lemma, this result may be established by a simple

induction argument.

If no ak is 0, for q = 1, 2, 3, ... , cXq = \/a , and, for q = 2, 3,4 . . . and

p = 2, 3, . . . , q, cpq = \/cp_Xq_x, then (3.1) is equal to

h   + !      -L -L
0      b\ + b'2 + • • • + b'„

where b'k = ckk ■ ■ ■ cXkbk,  k = 1,  2,  3, . . . .  If no bk = 0,  for q = 1,  2,

3, . . . ,  c    = \/b , and foxp i= q, c    = u, then (3.1) is equal to

ax       a-, a„
ba H-,  —  , ,  —

u  +   u  + • ■ ■ +   u

where a\ = axcxx and a'k = ck_Xk_xakckk, k = 2, 3, 4, ... . Thus, if no ak is 0

and, for k = 1, 2, 3,... ,b'lk =al(\la2) • • • (l/a2*)62/t and b>2k-i =

(\/ax) a2 • ■ • (l/a2k_x)b2k_x, (1.3) is equivalent to

(3.2) b  + ±      _L      J.
K    ' b° + b\ + b'2 + b'3 + ■ ■ • '

while if no bk is 0 and, for k = 1, 2, 3, ... , a'k + x = (l/bk)ak+x(l/bk+x) and
a\ = ax(\/bx), then it is equivalent to

a!       aí       a'-,

(3.3) ¿0 + -      —     —v     7 °       u   +   u   +   u   +■ ■ ■

Let Ax(z) = axz, Bx = bx, and, for n = 2, 3, 4, ... ,
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(34)    *.=4-,^)...(^+...4).

Notice that if S = E2, u = (1, 0), and b0 = 0, then An(u) and 77„ are

precisely the «th numerator and denominator, respectively, of (1.3). The only

reason for defining A„ as a function is to insure the correct association; it is

always evaluated at either u or at \ /Bn. With the convention that should the

formal expression 0 • oo occur, we will interpret it to be u, we have

(3-5) TxT2---Tn(0) = An(l/Bn).

Thus, the «th approximant of (1.3) is b0 + An(\/Bn).

4. Some applications. The continued fraction (1.3) is said to converge if and

only if not infinitely many terms of the sequence Bx, B2, B3, . . . have value 0

and Ax(l/Bx), A2(\/B2), A3(l/B3), . . . converges to a finite limit. (Notice

that it is possible for some factor in the expression for Bn to have value 0 and

B„ be distinct from 0. In fact, 0(x + y/0) has value either 0 or « accordingly

as y is or is not 0.)

Theorem 2. Suppose that for some positive integer m, am = 0 while if m > 1,

an ^ 0, « = \,2, . . . , m — 1. Then (1.3) converges if and only if not infinitely

many of Bx, B2, B3, . . .  are 0. When convergent, it has value Am_x(\/Bm_x).

Of course it is necessary that not infinitely many of Bx, B2, B3, . . . have

value 0. Hence, suppose that N is a positive integer such that, for m > N,

B„ =£ 0. Notice that Bm_ x # 0 for if it were 0, we would have that Bm = Bm+X

= Bm + 2 = • ■ ■ = 0. This can be seen in the following manner: Since am = 0,

then Bm is 0 or bmBm_x accordingly as bm is or is not 0. Thus, if Bm_x is 0, so

is Bm. Likewise, Bm+X is 0 or (bm + am+x/bm+x)Bm_x accordingly as bm +

am+x/bm + x is or is not 0. Therefore, when Bm_x = 0, Bm + X = 0. This process

may be continued.

Suppose that « is a positive integer larger than both N and m — I. Then

B„ ¥= 0 and hence

+ ^ ?^0
bm+x + •     ■ + b

Therefore

"

b,-k(k^i\- :ks+-4K'
and

am = Am_\bm + _ +... + - j • • • ybn_x + - jV,

Thus,

An(\/Bn) = am_x(\/Bm_x)

and hence, (1.3) converges to Am_x(\/Bm_x).
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The following identity is closely analogous to one for ordinary continued

fractions (see [3, pp. 15-16]).

Theorem 3. If no ak is 0, then, for n = 1, 2, 3, ...,

(4.1) \\An(\/Bn) - An+X(\/Bn+X)\\ =\\ax\\ \\a2\\ ■ K+.||/KII 11*^,11.
Since no ak is 0, we may write (1.3) as (3.2). Then according to (2.5) of [1],

\\An(\/B„) - An+X(\/Bn+X)\\ = \/ (DnDn+x)

where, for k = 1, 2, 3, ... ,

Dk=\H\ bh,+k b'x + v2 +
b'k

Referring to part (e) of the Lemma, we see that Dx = ||1/öi|| \\R\\\- Also,

D2=\\ax(l/a2)b2\\ \\(l/ax)bx + 1/ (ax(\/a2)b2)\\

which, by using parts (a), (d), and (e) of the Lemma, can be reduced to

||l/a2|| ||7i2||. By means of induction, we see that for k = 1, 2, 3, . . . ,

¿>a-,-|(l/fl,)l

and

D2k=\\(\/a2)

From this, (4.1) follows.

:i/*3)i • ■ • ii

(1/*4)|| '   «   •
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