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OPERATOR RADII OF COMMUTING PRODUCTS

K. OKUBO AND T. ANDO

Abstract. Operator radii wp(T) for a bounded linear operator T on a

Hubert space were introduced in connection with unitary p-dilations. We

shall be concerned with universal estimates for the ratios

wp(ST)/(wa(S)wl,(T))

for commuting operators S, T and o, p > 0.

1. All operators in this paper are bounded linear operators on a complex

Hubert space §. We say an operator T belongs to the class G (0 < p < oo) if

there exists a unitary operator U on some Hubert space sí such that H

contains § as a subspace and such that

T*h = pPU"h   for h G $ and n = 1, 2, . . . ,

where P is the orthogonal projection of © onto Q. The classes G were defined

by Sz.-Nagy and Foias, [7] while Holbrook [4] introduced the operator radii

wp(T) of an operator T, relative to Gp, by the formula:

wp(T) = inf{y; y >0,y~lT G Gp).

The family of operator radii includes the familiar quantities in operator

theory: wx(T) =||7]| (norm of T), w2(T) = w(T) := sup{|(77i, h)\; \\h\\ = 1}

(numerical radius of T), and limp_>aowp(T) = r(T) (spectral radius of T).

For each p > 0 the operator radius wp(-) is a pseudonorm on 93(D), the

space of all operators, in the sense that

wp(aT) =|«K(T),        wp(T+ S) < yp{wp(T) + wp(S)}

where y is a positive constant depending only on p. The constant yp can be

equal to 1 or p according as 0<p<2 or 2<p<oo. Each operator S

induces a linear map * on 93($) by the relation: *(T) = ST. When the space

93(§) is provided with the operator radius wp( ■ ), then for each operator S and

each a > 0 the Lipschitz constant of the map ¿. with respect to this pseudo-

norm wp(-) is majorated by a(2 - p) • wa(S) or op ■ wa(S) according as

0<p<lorl<p<oo (see the next section):

o(2-p)-wa(S)-wp(T)    for0<P< 1,p

Wp(Sr)      1 op ■ wa(S)- w(T) for 1 < p < oo.
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We can expect, however, to have better estimates for these if the map » is

confined to the commutant of S, the subspace of all operators commuting

with S. Indeed, it has been conjectured (cf. [4], [5]) that if 5 commutes with T

then

0) wp(ST) < a-w„(S)-wp(T)

and, in particular,

(*•) »¡HSV) <\\S\\Wp(T).

Remark that the inequality (**) implies, in its turn, the inequality (*) because

of the general relation: ||S|| < a ■ wa(S) for 0 < a < oo.

Holbrook [4] and, independently, Sz.-Nagy [6] showed that if S double

commutes with T, i.e. ST = TS and ST* = T*S then (**) holds.

Our purpose in this paper is to take a step towards the above inequalities.

We shall prove that if 5 commutes with T then (*) is valid for a > 2, and for

0 < a < 2

wp(ST)<La-wa(S)-wp(T)

where La is an increasing function of a such that L, = \Í2 , lim^gL,, = 0 and

liïïi„^L„ = 2.

As to the second inequality (**), we shall show that if 5 commutes with T

then

wp(ST)< Kp -\\S\\-wp(T)

where Kp is an explicitly given constant such that 0 < Kp < p, Kx = 1 and Kp

increases to V2  as p —> oo.

2. First we recall some properties of operator radii used in this paper :

(i) (Sz.-Nagy and Foias, [7]). wp(T) < 1 if and only if r(T) « 1 and

5L[p + 2zr(l - zT)~l] >0   for |z| < 1.

(ii) (Holbrook [4]). wp(£T) = ||| -wp(T) for all complex fe wp(T) = wp(T*),

and wp(T) is a continuous nonincreasing function of p.

(iii) (Ando and Nishio [1]). p • wp(T) = (2 - p) ■ w2_p(T) for 0 < p < 2,

and p • vvp(T) is nondecreasing for 1 < p < oo.

Since ||5|| < a ■ wa(S), \\T\\ < p ■ wp(T) by (ii) and (iii) and \\ST\\

> w (ST) for 1 < p < oo by (ii), we have the following trivial estimate:

wp(ST) «||ST||<||S'||-||7]|< op -wp(S)-wp(T)    for 1 < p < oo.

If 0 < p < 1 we can apply (iii) to get

wp(ST) < o(2- p)-wa(S)-wp(T)    forO<p< 1.

Lemma 1. If 1 < p < oo, then wp(T) < 1 implies

py

2j a   || T"«||
n = l

p« IN
for h G $ and 1 - 2/p < a < 1.

(1 - a)(2 - p + ap)



OPERATOR RADII OF COMMUTING PRODUCTS 205

Proof. 1 — zT has bounded inverse for \z\ < 1 and p + 2zT(\ — zT)~x

has positive real part by (i). It is well known that an operator 5 has positive

real part if and only if for each (and all) À > 0 the operator S + X has

bounded inverse and (S - X)(S + A)-1 has norm not greater than one.

Applying this to p + 2zr(l - zT)~x, we obtain

(2) ||{p - X + 2zT(\ - zT)-x}{p + X + 2zT(\ - zTyx}'^< 1,

which implies

(3) II{(P - A) - (P - ^ - 2)zT){(p + X) - (p + X - 2)zT)-xh\\

<||/z||    forhG§.

Since

_i_   \    _   -y
{(p + X)- (p + X-2)zT)-x=(p + X)-x 2 (-t^z

«=o

t P + X-2      \"

we have, for À j= p,

{(p - X) - (p - X - 2)zT){(p + A) - (p + A - 2)zT}-'

P-A

p + X
1 +

4A Sl^^z:
(p - A)(p + A - 2) „f, \     P + X

Therefore, setting z = re'9 and integrating the squares of both sides of (3)

over  (0, 2vt], we have

||2

fj"¿m Jq

4X

(p - X)(p + X - 2)
do

and further, using the orthogonality relation of e'^and e'm9 (n ¥= m) and

letting r -> I,

^ / p + A - 2 \2n

,-n    P + A

hence

p + A (p - A)(p + A - 2)

4A

(4)
~  / p + A - 2 \2

¿i\     P + A     /

,     p(p + X - 2f
\T"h\\2<-p + X     }   «    "i 4A r*l •

Since A can vary over (0, oo)\{p},a=(p + A — 2)(p + A)~ ' can move over

(1 - 2/p, 1) \ {1 - 1/p}. We can conclude, replacing (p + A - 2)(p + A)-1

by a in (4), that (1) is valid except for a = 1 - 1/p. This exception can,

however, be removed by limit procedure.

Remark that the inequality (1) for the special case a = 1 - 1/p was

obtained by Berger and Stampfli [2] by a different method.

Lemma 2. If 1 < p < oo and
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oo

(5) 2p-"(p- l)"\(T"h,g)\ <(p- l)||«||-||g||   forh,gG§
n=\

then wp(T) < 1.

Proof. First of all, (5) implies HT"!!1/" < p(p - l)'/"-1, hence r(T)

< p(p - 1)_1, for the spectral radius r(T) is equal to lim„_>0O||r'I||1/". Then

for each |z| < 1 the series 2^L,{p~'(p - l)z7"}" is uniformly convergent to

p-\p - \)zT{l - p-\p - l)zT}-', and by (5)

|(zT{p-(p- l)zT}-'«,g)| <||«||-||g||    forA,gG$,

or equivalently

(6) ||zT{p - (p- l)z7'}~,A||<||A||    for« G§and|z|< 1,

which is just (3) with X = p. If r(T) < 1, then (6) can be converted to (2) with

X = p, hence wp( T) < 1 by (i) as remarked in the proof of Lemma 1. Now let

us show that (6) implies r(T) < 1. In fact, if £ is an approximate eigenvalue

such that |£| = r(T) > 1, take |z| < 1 such that z£ = 1 + e for some e > 0

small enough so that p — (p — 1)(1 + e) > 0. Then (6) implies

1 + e=|z||<|p- (p- l)z||=p- (p- 1)(1 + e)

or 0 < — pe, a contradiction.

Theorem 1. If S commutes with T, i.e. ST = TS then

wp(ST)< L„-wa(S)-wp(T)   /orO<a,p<co

where

a - 1 + (1 + 2a - a2)'/2

L„ =

2 - a

a + (1 + 2a - a2)'72

2- a

forO < a < 1,

for 1 < a < 2,

for 2 < a < oo.

Proof. Since a • wa(S) = (2 - a) • w2_a(S) for 0 < a < 1 by (iii) and

wa(XS) = X ■ wa(S) for X > 0 by (ii) and similarly for p and T, we may

assume that 1 < a,p and ^„(S) = wp(T) = 1. Given ß > I, by Lemma 2, a

sufficient condition for wp(ST) < /? is that

00

2  /3-p-"(p- l)"\((ST)nh,g)\ <(p- l)||«||-||g||    for«,gG§.
n=l

Since ST = T5 implies

\((ST)"h,g)\ =\(T"h,S*"g)\ <||r"A||-||S*-g||,

a sufficient condition for wp(ST) < ß is

(7)    f  J8—p —(p- l)"||rnA||-||5*"g||<(p- l)||A||-||g||    forA,gG$.
n=l

To get an estimate for the left side of (7), take y such that
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(8)    1 -2/p< 1 - y/p< 1    and    1 - 2/o < (p - \)/ß(p - y) < L.

Then we have by Lemma 1

f.K)
2n_,    (p-yf

(9) yji--   \\T"hf< ||2

7(2 - y)

and by (ii): wa(S*) = wa(S) = 1,

n=l \

\2n
O —   1        \ ,

\\s*"g\\ß(p-y)
(10)  " ■ '

°(p- i)||s||
"  {/3(P-Y)-(P- l)}{(2-a)/J(p-y) + a(p- 1)}  '

Applying the Schwartz inequality, we obtain from (9) and (10)

{ ii^-np-n(P-i)nF''/i||-||5*''g||J

<2(i--) |r^s(^_) p-*f

_q(p-y)2(p-1)W-II gf_
* y(2-y){/i(p- y)-(p- 1)} {(2 - a)/3(p - y) + o(p - 1)}   "

Now a sufficient condition for wp(ST) < ß is that the inequality

(2 - a)(p - yfß2 - 2(p - l)(p - y)(l - o)ß

-o(p- \f-o-y-x(2-y)-x(p-y)2>0

has a solution y satisfying (8), for then (7) holds.

Now if 1 < o < 2 and p > 1, then (8) is satisfied with y = 1 and (11) takes

the following form

(2- o)ß2 -2(1 - o) ß - 2o- > 0

or equivalent^

- o + (1 + 2o - a2)'72
-^-^— for 1 < o < 2,£ >

for o = 2.

This proves the assertion for 0 < a < 2. Finally the assertion for o > 2

results from the above by (iii), i.e. o ■ wa(S) > 2 • w2(S) for a > 2.

It is quite easy, to show that La is a nondecreasing function of o on [ 1, oo)

while La/o decreases to 1 as a increases to 2.

Holbrook [4, Theorem 6.3] proved that if 5 commutes with T then

wp(ST) < 2wp(S) ■ wp(T)    for 0 < p < 2.

Theorem 1 gives an improvement because La < 2 for 0 < o < 2. On the

other hand, under the assumption of double commutativity, i.e. ST = TS and

ST* = T*S, Holbrook [4, Theorem 6.2] proved the inequality:
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wp(ST) < p -wp(S)-wp(T)    for0<p<oo.

Our Theorem 1 shows that double commutativity can be replaced by mere

commutativity for 2 < p < oo.

3. As remarked in the preceding section,

wp(ST) <p-\\S\\-wp(T)    forl <p<co.

Holbrook [4], [5] pointed out that for each p > 1 there is a constant Kp < p

such that if S commutes with T

wp(ST)<Kp-\\S\\-wp(T).

Further he showed that if we confine ourselves to commuting operators on a

Hubert space of fixed finite dimension then Kp can be chosen so that

Kp/p—*0 as p —> oo. But he could not get any explicit form of Kp. The

following theorem gives an estimate for Kp and, at the same time, removes the

restriction on dimension.

Theorem 2. If S commutes with T, then

wp(ST) < Kp ■ \\S\\-wp(T)   forO < p£ oo,

where

1/2

KP =

o<y<i    y (2 - y)       (p - y)

forO<p< 1,

for 1 < p < oo.

Proof. As in the proof of Theorem 1, we may assume that \\S\\ = wp(T)

= 1 and p > 1. Now (8) with a = 1 is reduced to

(12) 0 < y < min{2, p - ß~l(p - 1)},

while (11) takes the form:

(13) (p - y)2ß2 - (p - l)2- y~'(2 - y)-\p - y)2> 0.

Since every 0 < y < 1 satisfies (12), we get the assertion from (13), just as in

the proof of Theorem 1.

Since, for each fixed y with 0 < y < 1, (p — l)(p — y)_1 is an increasing

function of 1 < p < oo, the function Kp is increasing and satisfies

Kx = 1,    K2 = V27 /4    and     lim  K0 = V2
1 2 ' p—oo       *

and

lim Kp/p = 0.
p—>00        H

Obviously Kp <V2   < p for 2 < p < oo. Let  1 < p < 2. Setting y = p -

(p - 1)1/2 in l/y(2 - y) + (p - l)2/(p - y)2, we see

K2 < p - 1 + {P - (p - l)1/2f'|2 -p + (p- l),/2}~'< P2.
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4. When specialized to p = 2, the most important and interesting case,

Theorem 2 tells us that if S commutes with T then

H' (ST) <(V27/4)-||S||-w(r).

Of course, %/27/4 — 1.2990 is not at all the best possible estimate for K2. In fact,

M. J. Crabb informed us, in a private communication, of an effective method of

getting better estimates for K2.  Let us sketch his idea.

Suppose that ST = TS, 11511 = w(T) = 1 and h is a unit vector. Let

an=\\Tnh\\2+\\T*nh\\2        («=1,2,  ...)

and

ßn = «2—       (« = 1,2, . . . ).

By the Schwartz inequality

4\%*(STh,h)\2=\(STh + T*S*h, h)\2 <\\STh + T*S*hf

= \\STh\\2+\\T*S*h\\2+ 25i«((ST)2h,h).

Since ST = TS and \\S\\ < 1, we have

4ß4STh,h)\2<ViTh\\2+\\T*h\\2+2\^(S2T2h,h)\

< ßx + 2|3L(s2r2A,A)|.

Applying the same method to S2T2 and so on, we have

2\%*(STh,k)\

i ,
< 1 ßx + { ßi + { ßi + ■ ■ ■

+ {& + 2|^S2T2)!,/I)|}1/2)1/2'

<{&+{&+{&+••• +{2/?n}'/2},/2},/2...}'/2

because

2\^(s2"r2\ h)\ < 2||s2""r2""'«||-||s*2""'r*2""/i||

<||T2""'n||2+||T*2"",«||2 = Ä-

Now w(T) < 1 implies

%*(e'"Tg,g) <(g,g)    for g G Q.

Integrating this inequality over 0 < 9 < 2m with

g = i2e-2ieT*2h + ixe~ieT*h + i0h + íxei9Th + t2e2i9T2h

and using the orthogonality of {eM} we obtain

(14) ^(loi.«i + Stls«*) <|*o|2+|Éi|2«i +K2|2«2

for arbitrary complex numbers £k. An elementary argument reveals that (14)
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simply asserts a2 < a,(4 - a,). Hence, noting that ßx = a, and ß2 = a2, we

are led to the inequalities:

|9?*(STA,A)| <î{«i + {2a2}1/2} 1/2

<¿{a1+V2{a1(4-a1)},/2}12

<  max   Ux +V2 f x(4 - x)}1/2}
0<x<4      l l '        >

1/2

1/2= i{2 + 2VJ}    =*    1.169.

Since e'9S, for any 0, may replace S in the above, we obtain w(ST) < 1.169.

This method may be extended to obtain, in principle, a sequence of estimates

for w(ST). It is easy to generalize the argument leading to (14) to obtain

(15) SJ_2 4_,I,aJ <||0|2 + ¿ |4|2a,
(.£=1 J *:=1

for an arbitrary complex sequence {£k}. Then as in Crabb [3] we may

conclude that

«* = 2{y*-i ± (y*-i - Yt-iï*)     }
for some sequence

1 = Yo > Yi > • • •  > °-

Letting <50 = 1 and 8k = y2*-., we have

At = a2*-> < 2{S/t_1 + (5fc2_! - Sfc.A)     },

so that, for each «, w(ST) is bounded above by the maximum of

;(2ô0 + 2(o02-o0o1)1/2

i

+ {--- + {4ôn_, + 4(e,-ôn_A)1/2),/2---}

subject to the restriction:

1 = o0 > o, > ■ ■ ■  >8n>0.
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