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ON A PROBLEM OF TURAN ABOUT
POLYNOMIALS

R. PIERRE AND Q. I. RAHMAN1

Abstract. It is shown that if p„(x) is a polynomial of degree n whose graph

on the interval -1 < x < 1 is contained in the unit disk then the absolute

value of its second derivative cannot exceed \{n — l)(2n — An + 3) on

[-1,1].

In the year 1889 A. A. Markoff [2] proved the following result:

Theorem A. If p„(x) = 2"=o avx" Ö a polynomial of degree n and \pn(x)\

< 1 in the interval — 1 < x < 1 then in the same interval

(1) \pH(x)\ < nl.

The constant n2 in (1) cannot be replaced by any lower constant. In fact,

the «th Tchebycheff polynomial of the first kind

n

(2) Tn(x) = cos(n arc cos x) = 2" x  ]J [x - cos((»' - x2)-n/n))

satisfies the conditions of Theorem A and its derivative at the point x = 1 is

equal to n2.

W. A. Markoff (brother of A. A. Markoff) considered the problem of

determining exact bounds for the kth derivative of p„(x) at a given point x0 in

[—1,1] under the conditions of Theorem A. His results appeared in a Russian

journal in the year 1892; a German version of his remarkable paper was later

published in Mathematische Annalen [3]. Amongst other things he proved:

Theorem B.    Under the conditions of Theorem A

max   |p(*)(*)| < «y-l2)(*2-22)--V-(*-02)(3) _max^iip„W|s 1 - 3 - 5 - - - (2>t - 1)

k = 1,2, ...,«.

The right-hand side of this inequality is exactly equal to 7^(1), where Tn(x)

is the nth Tchebycheff polynomial of the first kind (2). W. A. Markoffs proof
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of this result is based on a method which applies only to polynomials with real

coefficients, but this is a restriction which is easily removed. For if pn(x) is any

polynomial which satisfies the conditions of the theorem and y is a complex

constant of unit modulus then ypn(x) will satisfy the conditions of the theorem

and so will Re{yp„(x)}. But y can be so chosen that the derivative of ypn(x) at

any preassigned point is real, and then the derivative of Re{yp„(x)} will have

the same modulus as p'„(x) at this point.

For fixed k suppose that p„(x) is an extremal polynomial, that is, suppose

its kth derivative assumes the maximum possible value under the conditions

of the theorem. (It is easily shown that such polynomials exist.) Markoff used

a variational method to show that |p„(x)| must be equal to 1 at either « or

« + 1 different points in the interval [—1,1]. In the latter case ±p„(x) is the «th

Tchebycheff polynomial of the first kind, whose derivatives are easily shown

to satisfy (3). In the former case it is possible to show that p„(x) satisfies a

differential equation of the form

/    / w2      (1 — x )(x — b)(x — c),  , . ,,?
(4) 1 - (Pn(x))2 = i-'f-^-L(p„(x))2.

n2(x - a)

Here a, b, c are real constants which depend upon one parameter. Markoff was

then able to show that the derivatives of this class of polynomials satisfy (3),

but the proof is quite difficult.

W. A. Markoff [3] started out by taking a very general point of view: //

An, Xi, ... ,Xn are given constants and p„(x) = 2"=o ayXv satisfies the condi-

tions of the theorem, what is the precise bound for the linear form 2"=o ai/X„? By

suitably choosing the constants X„ the linear form can be made equal to any

derivative of pn(x) at any preassigned point.

For polynomials with real coefficients the hypothesis |p„(x)| < 1 for

-1 < x < 1 means that the graph of p„(x) on the interval -1 < x < 1 lies

in the square {(x,y) G R2: -1 < x < 1,-1 < y < 1}. Recently Professor P.

Turan proposed consideration of polynomials whose graph on the unit interval

lies in the unit disk. Such type of problems occured first in the approximation

theory, notably in the work of Dzjadik on converse type theorems concerning

approximation by rational polynomials in [—1,-tT].

One of us has proved [5] the following analogue of Theorem A.

Theorem C. // p„(x) is a polynomial of degree « such that |p„(x)|

< (1 - x2)* for-\ < x < 1, rA<?«

(5) max   \p'n(x)\ < 2(« - 1).

'

(6) U„(x) = (1 - x2r'sin{(« + l)arc cos x}

is the nth Tchebycheff polynomial of the second kind then p„(x) =

(1 — x2)Un_2(x) satisfies the conditions of Theorem C and \p'n(±l)\ = 2(« — 1).

Here we consider the problem of estimating max_1<x<1 |p^'(x)| under the

conditions of Theorem C. Although we have not been able to solve the
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problem completely, we do show that

(7) max   \P:(x)\ < \(d2/dx2)((\ - x2)U„_2(x))\x=±x.
v   ' —1<X<1

We are tempted to conjecture that

max   \pnkHx)\ < \(dk/dxk)((l - x2)Un„2(x))\x=±x
-\<x<\

holds also for k = 3, 4, ..., n.

We observe that many of the ideas of W. A. Markoff when slightly modified

apply to the present problem. However, part of his reasoning is very hard to

carry over. It was only in the case k = 2 that we could get around the

difficulties by using an idea which has been previously used by S. N. Bernstein,

B. Ya. Levin and others.

Consider the real linear space % of all polynomials

P(x) = a0 + ax x + ■ ■ ■ + anx"

of degree at most n with real coefficients and satisfying P(— 1) = P(+\) = 0.

If for each P G % we define

(8) m=_f^jnm-x*)h
% becomes a normed linear space. Consider a general linear functional co on

%. There exist real numbers a0, ax, ..., an such that

u(P) = a0a0 + axax + ■■■ + anan       \P(x) =   2 a„x"j.
,-0

We shall like to determine its norm:

||u||  =    sup   \u(P)\.

For this let a be a real number different from zero and denote by %a the class

of all polynomials P G % for which u(P) = a. If P* is a polynomial of

smallest norm amongst all polynomials belonging to %   then clearly

M = 1^711^*11)1.
It is therefore of fundamental importance for us to be able to recognize

polynomials P* G %a whose norm is the smallest. Such polynomials will

hereafter be referred to as "minimal".

We shall now state three auxiliary results which are obtained by suitably

modifying the proofs of (i) the lemma on p. 215 of [3], (ii) Theorem 1 on pp.

216-217 of [3], and (iii) Theorem 2 on pp. 219-220 of [3], respectively.

Lemma 1.    Let P G 9na and let xx, x2, ..., xk be the roots of the equation

(9) ||7>||2 - {7>(x)/(l -x2)^}2 = 0

lying in (—1,1). Then P is minimal if and only if there does not exist a polynomial
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g G % such that

«(g) = o,

and the products

g(xx)P(xx), g(x2)P(x2), ..., g(xk)P(xk)

are all negative.

Lemma 2.    Let P G «éP    and let xx, x2, ..., xk be defined as above. Put

(10) F(x) = (1 - x2) fi (x - x,)

and

(11) F,(x) = F(x)/(x - x,),       l=\,2,...,k.

Then P is minimal if and only if (i) the numbers

(12) u(Fx)(-l)XP(xx), ..., o(Fk)(-\)kP(xk)

are all of the same sign and (ii) in case k < « — 1, we have

(13) ío(F^) = 0

for all polynomials \p of degree at most n — k — 2.

Lemma 3. If the minimal polynomial is not unique then there always exists one

for which equation (9) has at most (n - 3)/2 roots if n is odd, and at most

(n — 2)/2 roots if n is even.

Let us now consider the case

«(?) = <P0)0) = (dj/dxJ)[<f{x)\\x=t,        «p G %,

where 0 < j < « and t is given. First we wish to show that in this case,

equation (9) has at least « - 2 roots in (-1,1). If not, (13) which takes the

form

(14) f^CMO + ("j W-'HOM) + ■ ■ • + F(t)^J\t) = 0

is valid for all polynomials i^(x) of degree « — k - 2 (> l)or less, where k is

the number of roots of (9) in (-1,1). Since the numbers \p(t), \p'(t), ...,

\p("~k~2'(t) may be chosen arbitrarily, it follows that

f(J)(t) = F^~x\t) = • • • = F(t) = 0   if j < « - k - 2

whereas

F(j)(t) = F^~x\t) = ■ • • = fU-n+k+2)^ = 0   if / > „ - A: - 2.

Thus if k were less than « - 2 then in any case F^m'(t), F^m~x\t) would vanish
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for some m (1 < m < k + 2) which is impossible since the zeros of Fare real

and distinct.
In view of Lemma 3 we conclude that for the functional under considera-

tion the, minimal polynomial is unique.

We are able to identify the polynomial for which k — n — 1 and, with the

help of Lemma 2, determine values of t for which it is minimal. In this case,

the polynomial satisfies the differential equation

"2 - ̂ -2 = —^(f-AïV11^I - x2      4(n- \)2W\ - x2/ J        y2

where M = max_x<x<x \y/(l — x2y\. Solving the differential equation by

separation of variables, we obtain

2       y2
-ï-1? = cos{2(« - l)arc cos x + C]

M2(l - x2) l '

where C should be 2kir since the polynomial vanishes at 1. Thus

y = ±M(\ - x2)Un^(x),

and using the fact that <pV'(t) = a we get

(15) y - «fl - x2)Un_2(x)/P^(t),

where P(x) = (1 - x2)Un_2(x). In view of Lemma 2, the polynomial (15) is

minimal for those values of t for which the corresponding numbers (12) are all

of the same sign. The polynomials (10) and (11) which correspond to (15) are

F(x) = (\-x2)Tn_x(x)/2"-2,

F(x) - (\ - x2)Tn_x(x)
mx) - ^27-7,—TwT-TÜ'       / - 1, 2, ..., n - 1.

2" ¿{x - cos(l - {)m/(n - 1)}

The corresponding numbers (12) are

—zg^A—i ¿J fa -*2)rn-,(*ni
(16)    p^(t)2»-2V    XldxA     x-x,     )l_t;

1= 1,2, ...,n- 1,

where x¡ = cos{(/ - \)"n/(n - 1)}. Now with the help of a reasoning similar to

that used by W. A. Markoff it can be proved that the numbers (16) are all of

the same sign if t belongs to any of the intervals

(-°°.£il> fauM • • •. [%-j-i,tn-jl bl*-j> °°)

where £j, £2j • • • > in-j ancl 11* %> • • • > t»-,/ are me roots (arranged in increas-

ing order) of the equations

((* + \)Tn_x(x)fJ) = (x+ l)Tn_x0)(x) +jTn^-x\x) = 0
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\Ü)((x - \)Tn_x(x))^ = (x- l)r„_,(»(x) +jTn_x^-x\x) = 0

respectively.

Using the well-known differential equation

(x2 - i)r;'_,(x) + xT'n_x(x) = (« - i)2r„_,(x)

satisfied by 7^_i(x) we can show that

-cos ^TT < £1 < *n-j < cos
« - 1

if y > 3

and

-cos
2(« - 1)

< £.  < TJ„_, < cos
2(« - 1)

if y = 2.

We have shown, in particular, that amongst all polynomials P S 9n for

which P"(t) = a at a given point t in

or in

[-\,-cos(m/2(n- 1))]

[cos(V2(« - 1)), 1]

the polynomial (15) is of smallest norm.  In other words, if p„(x)  is a

polynomial of degree « such that |p„(x)| < y 1 - x2 for -1 < x < 1 then

(17)   \P'„(t)\ < f-2((\ - x2)Un_2(x))
dx

<
dx2

((1 - x2)Un_2(x))
x = ±\

if cos(tt/2(« - 1)) < \t\ < 1.
For the limited purpose of getting the desired global bound (7) for the

second derivative of polynomials whose graph lies in the unit disk we need not

consider the (rather complicated) case k = « — 2. We may instead complete

the proof as follows.

Consider the operator B which carries p„(z) = 2"=o avz" into

HpM = \PÁZ) + Xx(nz/2)p'„(z)/V. + X2(nz/2)2P"n(z)/2\

where X0, X1( and X2 are such that all the zeros of

u(z) = X0+ (")V + (2JA2

lie in the half plane |z| < |z - «/2|. Using the fact that if all the zeros of pn(z)

lie in |z| < 1 then [1, p. 65, see Corollary (18.3)] so do all the zeros of the

polynomial B[pn(z)] we can prove the following result in precisely the same

way as Theorem 4 of [4].

Lemma 4.    Let qn(z) = 2"=o bvz" with bn ¥= 0 have all its zeros in \z\ < 1.
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Ifpn(z) is a polynomial of degree « such that \p„(z)\ < \q„(z)\ for \z\ = 1 then

\B[Pn(z)]\ < \B[qn(z)}\    for\z\ >  1.

From this we can easily deduce (see [4, pp. 306-307]):

Lemma 5. Let t„(z) = 2"=-n dvexvz with dn y= 0 be a trigonometric polyno-

mial having all its zeros in Im z > 0. If S„(z) = 2"=-„ cve'vz is a trigonometric

polynomial of degree « such that \S„(9)\ < ¡Tn(9)\ for real values of 9 and the

zeros of the polynomial

ux(z) = 2a(2« - l)z2/« - 2{a(2« - 1) + ib}z + an2 + inb - c

lie in the half plane \z\ < \z — n\, then

\aS"n(9) + bS'n(9) + cSn(9)\ < \aj"n(9) + br'n(9) + cr„(9)\

for real 9.

We observe that if a, b, c are real and

(18) nb2 + «(2« - l)a2 - 2ac(2« - 1) > 0,

then the zeros of the polynomial ux (z) are of the form «/2 ± iß where ß is real,

i.e. they lie in the half plane |z| < |z — «|. Hence we have

Lemma 5'. Let t„(z) and Sn(z) be trigonometric polynomials as in Lemma 5.

If a, b, and c are real numbers such that (18) holds, then

\aS"n(9) + bS'n(9) + cSn(9)\ < |<(0) + br'„(9) + cr„(9)\

for real 9.

We may use Lemma 5' to show that if p„(x) is a polynomial of degree « such

that |p„(x)| < (1 - x2)* for -1 < x < 1, then for \x\ < eos(m/2(n - 1)) we

have

\p"„(x)\ <
dx

((\ - x2)Un_2(x))
x = ±\

= =(« - 1)(2«2 - 4« + 3).

Let x0 = cos #0 be an arbitrary point in

[-cos(w/2(n - 1)),cos(tt/2(« - 1))]

and   apply   Lemma   5'   with   t„(z) = ^"""'^sin z,   Sn(z) = p„(cos z),

-tan 90, b = 1, and c = 0. We obtain

sin3f/0

cos
/>«(cos 90) <

sin o«
-i(n - l)sin 90 + {(« - l)2 + 1}^ + cos 90

or

\P"n(cos90)\

(19) .      1
<

sin 9n
{«(« - 1)2(« - 2) + 3(« - l)2/sin2f50 + l/sin40o}.
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It can be easily verified that the right-hand side of (19) does not exceed

\(n - 1)(2«2 - 4« + 3) for n > 2 if |cos 90\ < cos(-n/2(n - 1)) as happens to

be the case. With this the proof of the following theorem is complete.

Theorem. If pn(x) is a polynomial of degree n such that \pn(x)\ < (1 -x y

for — 1 < x < 1, then

max   \p"n(x)\ <
\<x<\      n

J2

dx2
—2((\ - x2)Un_2(x))

x = ±\

(2°) 2
= Un - l)(2n2 -4n + 3).
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