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ON THE STRUCTURE OF LINDENBAUM
ALGEBRAS:

AN APPROACH USING ALGEBRAIC LOGIC

CHARLES PINTER

Abstract. The following problem of algebraic logic is investigated: to

determine those Boolean algebras which admit the structure of a nondiscrete

cylindric algebra. A partial solution is found, and is then used to give an

algebraic characterization of the Lindenbaum algebras of formulas of several

broad classes of countable theories.

1. Introduction. A major open problem of algebraic logic is the following:

Which Boolean algebras admit the structure of a nondiscrete cylindric or

polyadic algebra? Using results of Henkin, Monk and Tarski [1], one easily

proves:

A denumerable Boolean algebra admits the structure of a nondiscrete, dimen-

sion-complemented cylindric algebra if and only if it is not atomic.

We establish this, as well as a few related results, and use them to investigate

the structure of Lindenbaum algebras of countable theories.

In the sequel, let T denote any countable theory. By the Lindenbaum

algebra ^T of T we will always mean the Lindenbaum algebra of formulas1 of

T. From results in [1] we easily establish that if T has no one-element models

then ?Fr is atomless (this characterizes Sy, for there is, up to isomorphism, only

one atomless, denumerable Boolean algebra). Let us say that T admits

elimination of all but n predicates if T is definitionally equivalent to a theory T'

whose language may have finitely or denumerably many operation symbols, but

has no more than n predicate symbols other than = ; for n = 0, we say that

T admits elimination of predicates. It is shown that an arbitrary theory T admits

elimination of predicates if and only if F has either no one-element models, or

all of its one-element models are elementarily equivalent. We prove that if a

theory T admits elimination of predicates then 9T has < 1 atom; more

generally, if T admits elimination of all but n predicates then <&T has < 2"

atoms. Then we provide a method to determine the exact structure of ^T

whenever T admits elimination of all but finitely many predicates.

Our notation and terminology is that of Henkin, Monk and Tarski [1], and

we presuppose an acquaintance at least with Chapter 1 of this work.
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1 We will deal here with Lindenbaum algebras of formulas, rather than Lindenbaum algebras

of sentences.
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2. Results on cylindric algebras. Throughout this section, let 91 = {A, +, -, —,

0, l,f|(,i'iA)|(x<a De a nondiscrete, dimension-complemented cylindric algebra.

By [1, 1.11.3(iii)], a > w. The following statements, which are easily deduced

from results given in [1], will be needed in the sequel:

(A) if cqí/qi = 0, then 2Í is atomless;

(B) if Co¿/01 # 0, and there is no zero-dimensional element x ¥= 0 such that

x < cqc70i , then Cq^qi is the only atom of 21;

(C) 21 = 23 X GE where 93 is atomless and Ë is discrete.

(A) and (B) follow from [1, Theorems 1.10.5(a), 1.11.8(i) and 1.6.208]. (C)
follows from [1, Theorems 2.4.37 and 1.11.8(h)].

Every Boolean algebra admits the structure of a discrete cylindric algebra,

so there is no need to consider that case further. Similarly, every Boolean

algebra admits the structure of a cylindric algebra of degree 1, for example by

taking c to be the quantifier given by cO = 0, x =£ 0 => cx = 1. Thus, we

should confine our attention to nondiscrete cylindric algebras of degree

a > 2.

If 93 is any denumerable, atomless Boolean algebra, then 93 admits the

structure of a nondiscrete cylindric algebra of degree w. Indeed, if T is any

countable theory which has no one-element models, then TV -i(Vi>0)

(v0 = vx ), hence by (A), the Lindenbaum algebra of formulas of T is an

atomless denumerable Boolean algebra. This Lindenbaum algebra is isomor-

phic to 93 because any two denumerable atomless Boolean algebras are

isomorphic.

Now, let 91 be any denumerable Boolean algebra having a direct factor

which is an atomless denumerable Boolean algebra, say 21 = 93 X Ê where 93

is atomless and denumerable. We have just seen that 93 admits the structure

of a nondiscrete, dimension-complemented cylindric algebra, and 6 certainly

admits the structure of a discrete cylindric algebra, hence 9f admits the

structure of a nondiscrete, dimension-complemented cylindric algebra. Com-

bining this with (C), we get

(D) A denumerable Boolean algebra admits the structure of a nondiscrete

dimension-complemented cylindric algebra if and only if it has a direct factor

which is denumerable and atomless.

By the elementary theory of Boolean algebras, to say that 21 has a direct

factor which is denumerable and atomless is equivalent to saying that 21 is not

atomic. Thus, we have proved

Theorem 1. A denumerable Boolean algebra admits the structure of a

nondiscrete dimension-complemented cylindric algebra if and only if it is not

atomic.

In the discussion which follows we will use an algebraic counterpart of

terms in first-order languages. For a full discussion of terms in cylindric

algebras the reader is referred to [4]; however, for the present purposes only a

few rudimentary notions are needed. An element x G A will be called

"diagonal-like" if it has the following two properties for some k < a:

(1) cKx = 1, and

(2) x • s^x < dK)l for each ¡i G a — Ax.
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With every diagonal-like element x G A we associate a term a, and (for x

satisfying (1) and (2) above), we write x = dKa. (In the metalogical interpreta-

tion, dKa is the equivalence class of the formula vK = a, and (1) and (2) assert

the unique existence of vK satisfying vK = a. Thus, if 2Í is taken to be an algebra

of formulas, the "terms" of 31 are all the terms which are explicitly definable

in the theory associated with 21.)

The following properties of diagonal-like elements will be relevant to our

discussion:

Theorem 2. If x is any diagonal-like element, then x > c0c70i.

Proof. Let x satisfy (1) and (2). By [1, 1.6.20], cdKdKX - x G Zd%. Thus,

c¡dKX ■ -x = 4(cdKdKX ■ -x) = cKac7KX ■ -cKx = cldKX -0 = 0.

Thus, c\d^ < x.
From this theorem, we deduce a useful generalization of [1, Theorem

2.3.33]:

Corollary 3. Suppose Si G Dca, a > 2, and 21 has a set of generators, X,

such that all but n elements of X are diagonal-like. Then

(i)  \AtK\<2»,and
(ii)  4d0X =^At%.

Proof. By Theorem 2, if x is diagonal-like, then x ■ ¿o^oi = cç,dox. The

remainder of the argument is exactly as in [1, Theorems 2.3.31 and 2.3.33].

The converse of Theorem 2, which follows next, states that if x > c0d0\,

then x is generated from the diagonal-like elements of A .

Theorem 4. If x > CQdox, then there is a diagonal-like element y such that

x = -cyc^iyd^-d^).

Proof. Take distinct k, X, ¡x G a - Ax. Let

y = dK\ ■ dKV. + dw ~ dK\ - x + ¿A/i - dK\ ■ x-

One verifies directly (we omit the simple details) that c y = 1, and for any

v G a — Ay, y ■ s$y < d   . Thus, y is a diagonal-like element. We note that

^a^Mka • y ■d^) = cKc\[-dK\ ■ cß(y ■ d^)\ = cKc\(~dK\ ■ s«y)>

Now, s^y = dKX + -dKX ■ -x, hence

ckca(-^kA • $y) = cKcx(-dKX ■ [dKX + -dKX ■ -x])

= cKc\(~dKX ■ -x) = (cKcx - í7kX) • -x.

But by assumption, -x < -cjjc701 = cKcx - dKX, so cKcx(-dKX ■ s£y) = -x.

Corollary 5. Si is generated by its diagonal-like elements iff Cqc70) = 0 or

4do\ is an atom.

Proof. If A' is a set of generators of SI, then (as in the proof of [1, 2.3.31],
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Rlcid 2t is generated by {x • Cqí/0i : x G X}. Thus, if X contains only diago-

nal-like elements, then by Theorem 2, [x ■ Cç,dox: x G X} — {c(,dox}, hence

CqJ0i = 0 or Cç)dox is an atom. Conversely, suppose that cqí/01 = 0 or C(,dox Is

an atom. In the first case, x > Cc,dox for every x G A; in the second case,

either x > cfj^oi or ~x > ¿o^oi f°r every x G A. Thus, by Theorem 4, 21 is

generated by its diagonal-like elements.

Finally, the following result is of some interest:

Theorem 6. 21 has a set of generators, X, which contains only diagonal-like

elements and zero-dimensional elements.

Proof. 2Í a Rlc»d 2Í x RLcsd 21; as we have seen above, Rl_cy^ is

generated by its diagonal-like elements, and Rlc>d 21 is generated by zero-

dimensional elements.

3. Applications to Lindenbaum algebras. The connections between algebraic

logic and logic are studied in [2] and [3]. For example, it is proved in [3] that

two arbitrary theories are definitionally equivalent iff their associated cylindric

algebras are isomorphic. Furthermore, from the discussion in [3], it is clear

that if a language has no relation symbols, then its associated cylindric algebra

is generated by its diagonal-like elements; and conversely, if the cylindric

algebra associated with a theory T is generated by its diagonal-like elements,

then T is definitionally equivalent to a theory in a language with no relation

symbols. In the sequel, these facts will be used without further explicit

mention.

Throughout this section, we will take 21 to be the Lindenbaum algebra of

formulas, 9T, of a first-order theory T.

We will show, first, that Corollary 5 yields a necessary and sufficient

condition for the eliminability of predicates in favor of functions. We begin

by noting the following:

For 2t = 9T, 4d0X =0 iff TV -i(Vi/0) (v0 = vx) iff T has no one-
element models. On the other hand, C(,dox is an atom if and only if Rlcdd 21 is

a two-element Boolean algebra. Now, the discrete cylindric algebra Rlc¡d 21 is

the algebra of formulas of the theory of one-element models of T, and a theory

is complete iff its Boolean algebra of sentences has two elements; thus, CQdox

is an atom iff all the one-element models of T are elementarily equivalent.

Combining this with Corollary 5, we get

(E) An arbitrary theory T admits elimination of predicates iff T either has no

one-element models, or all of its one-element models are elementarily equivalent.

From Theorem 6 we deduce that for any theory T, predicate symbols are

eliminable in favor of function symbols and propositional constants:

(F) Any theory Tis definitionally equivalent to a theory T' whose language has

no predicate symbols but may have function symbols and propositional constants.

(Note that the propositional constants serve only to axiomatize the class of
one-element models of T.)

We will now use Corollary 3 to describe the structure of the Lindenbaum

algebras of formulas of certain theories. If Thas no one-element models, then,

as we have already noted, in <5T, c$dox = 0. Thus, in view of (A), we have
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(G) If T has no one-element models, then §T is an atomless Boolean algebra.

If T has one-element models, we may use Corollary 3 to deduce

(H) If T admits elimination of all but n predicates, then fT has < 2" atoms.

If T is any theory which admits elimination of all but finitely many

predicates we can, in fact, find the exact structure of Sy. We assume the

language L of T is denumerable.

Let <F,);<-„ be the sequence of predicate symbols of L, and let 5, be the rank

of P¡ for each /' < n. It follows from [1, Theorem 2.4.37] that <5T =s 33 X 6,

where 33 = Rlc^ 31 and <S = Rl-4d0l *• We have already seen tnat 6 belongs

to the isomorphism class of denumerable, atomless Boolean algebras, so it

remains only to determine the structure of 33. Now, 33 is the algebra of

formulas of the theory Tx whose nonlogical axioms are those of T together with

the formula (Vi/0) (v0 ■» t>i). It is immediately verified that

Tx\-P¡(vl,...,vs)~Pi(tl,...,ts¡)

for every i < n and all terms tp and Tx (- (\/vK)F*-* F for every formula F.

Thus 33, the algebra of formulas of 7J, is the same as the algebra of formulas

of the theory in the propositional calculus whose propositional variables are

P\, ..., Pn-\, and whose axioms are obtained from those of Tx by deleting all

variables, terms and quantifiers (together with the associated commas and

brackets).

Bibliography

1. L. Henkin, J. D. Monk and A. Tarski, Cylindric algebras. Part 1. With an introductory

chapter: General theory of algebras, Studies in Logic and the Foundations of Math., vol. 64, North-

Holland, Amsterdam, 1971. MR 47 #3171.
2. L. Henkin and A. Tarski, Cylindric algebras, Proc. Sympos. Pure Math., vol. 2, Amer. Math.

Soc., Providence, R.I., 1961, pp. 83-113. MR 23 #A1564.

3. H.-J. Hoehnke, Zur Strukturgleichheit axiomalischer Klassen, Z. Math. Logik Grundlagen

Math. 12 (1966), 69-83. MR 32 #5499.

4. C. Pinter, Terms in cylindric algebras, Proc. Amer. Math. Soc. 40 (1973), 568-572. MR 48

#3738.

Department of Mathematics, Bucknell University, Lewisburg, Pennsylvania 17837


