LIE GROUPS ISOMORPHIC TO DIRECT PRODUCTS OF UNITARY GROUPS

IVAN VIDAV AND PETER LEGIŠA

Abstract

A criterion is given for a compact connected subgroup of $\mathrm{Gl}(n, \mathbf{C})$ to be isomorphic to a direct product of unitary groups. It implies that a compact connected subgroup of rank n in $\operatorname{Gl}(n, \mathrm{C})$ is isomorphic to a direct product of unitary groups.

The paper gives a generalization of some of the results in [3]. Let G be a compact connected subgroup of $\mathrm{Gl}(n, \mathbf{C})$. We denote by $L(G)$ the Lie algebra of G and set $H(G)=i L(G)$. The rank of G is the dimension of a maximal torus in G (see [1, p. 93]).

Theorem. Let G be a compact connected subgroup of rank k in $\mathrm{Gl}(n, \mathbf{C})$. Suppose there exist $r \geqslant k$ orthogonal idempotents a_{1}, \ldots, a_{r} in $H(G)$. Then $r=$ k and G is isomorphic (as a Lie group) to a direct product of unitary groups: $G \cong U\left(n_{1}\right) \times \cdots \times U\left(n_{m}\right)$ with $n_{1}+\cdots+n_{m}=k$.

Proof. By [2, p. 176, Theorem 1] G is similar to a subgroup of $U(n)$. Hence we may assume that G is a subgroup of $U(n)$. Thus the operators in $H(G) \subset \operatorname{End}\left(C^{n}\right)$ are hermitian. Since a_{1}, \ldots, a_{r} commute we see that $T=\left\{\exp \left(i t_{1} a_{1}+\cdots+i t_{r} a_{r}\right) \mid t_{1}, \ldots, t_{r} \in \mathbf{R}\right\}$ is a torus in G of dimension r. Clearly $r=k$ and T is a maximal torus. If $a \in H(G)$ then $\exp ($ ita $) \in G$ $(t \in \mathbf{R})$ and is contained in some conjugate of T (see [1, p. 89]), i.e. $\exp ($ ita $) \in u^{-1} T u=u^{*} T u$ for some $u \in G$. It follows that $a=t_{1} u^{*} a_{1} u$ $+\cdots+t_{r} u^{*} a_{r} u$. Since $a^{2}=t_{1}^{2} u^{*} a_{1} u+\cdots+t_{r}^{2} u^{*} a_{r} u$ and $u^{*} a_{s} u \in H(G)$ for $s=1, \ldots, r$ we see that $a^{2} \in H(G)$. Let $b \in H(G)$, too. Since $a b+b a$ $=(a+b)^{2}-a^{2}-b^{2}$ we see that $a b+b a \in H(G)$. Also, $a b-b a \in i H(G)$ since $i a, i b \in L(G)$. Thus $a b \in H(G)+i H(G)$. Let $A(G)=H(G)$ $+i H(G)$. It follows that $A(G)$ is an algebra. Clearly, it is a finite dimensional C^{*}-algebra. By the Wedderburn decomposition there exist central idempotents $e_{1}, \ldots, e_{m} \in A(G)=A$ such that $A=A e_{1} \oplus \cdots \oplus A e_{m}$ and $A e_{s}$ is isomorphic to $\operatorname{End}\left(X_{s}\right)$ for some finite dimensional vector space X_{s} over C $(s=1, \ldots, m)$.

The ideal $A e_{s}$ is closed, hence selfadjoint and a C^{*}-subalgebra of A. Clearly, e_{s} is the identity on $A e_{s}$ and hence $e_{s}^{*}=e_{s}$. Consider the group V of unitary elements in $A e_{s}$. The isomorphism $A e_{s} \cong \operatorname{End}\left(X_{s}\right)$ defines a (continuous) representation of V on X_{s}. Using once more [2, p. 176, Theorem 1] we equip X_{s} with an inner product such that the isomorphism maps V into the unitary

[^0]group of $\mathcal{L}\left(X_{s}\right)$, the C^{*}-algebra of all linear operators on the Hilbert space X_{s}. Consequently, hermitian elements in $A e_{s}$ are mapped into hermitian operators and our isomorphism in an isometric*-isomorphism. We identify the algebras $A e_{s}$ and $\mathscr{E}\left(X_{s}\right)$ in this sense.

Since $\exp : L(G) \rightarrow G$ is surjective, $G \subset A$. If $u \in G$ then $\left(u e_{s}\right)^{*} u e_{s}$ $=e_{s} u^{*} u e_{s}=e_{s}$. Thus $u e_{s}$ is a unitary operator on X_{s}. Consider the smooth homomorphism $G \rightarrow U\left(X_{1}\right) \times \cdots \times U\left(X_{m}\right)$ given by $u \mapsto\left(u e_{1}, \ldots, u e_{m}\right)$ ($U\left(X_{s}\right)$ denotes the unitary group on $\left.X_{s}\right)$. We claim this homomorphism is onto. Let $u_{1} \in U\left(X_{1}\right)$. There exists a hermitian element $h_{1} \in A e_{1}$ such that $\exp \left(i h_{1}\right)=u_{1}$. Consider h_{1} as an element in A. Then $\exp \left(i h_{1}\right)=\left(u_{1}, 1, \ldots, 1\right)$. Observe that the inverse $\left(u e_{1}, \ldots, u e_{m}\right) \mapsto u e_{1}+\cdots+u e_{m}$ is also smooth and that $\operatorname{rank}\left(U\left(n_{1}\right) \times \cdots \times U\left(n_{m}\right)\right)=n_{1}+\cdots+n_{m}$.

Corollary. Let G be a compact connected subgroup of rank n in $\mathrm{Gl}(n, \mathbf{C})$. Then G is isomorphic (as a Lie group) to a direct product of unitary groups.

Proof. As before, we may assume that $G \leqslant U(n)$. Let T be a maximal torus in G. Then $i L(T)$ contains n commuting linearly independent hermitian operators, say h_{1}, \ldots, h_{n}. It is well known that these operators have a common orthogonal eigenbasis. Thus there exist $s \leqslant n$ orthogonal projections p_{1}, \ldots, p_{s} such that every h_{i} is a linear combination of p_{1}, \ldots, p_{s}. Since h_{1}, \ldots, h_{n} are linearly independent, $s=n$. Thus $i L(G)$ contains n orthogonal idempotents and we may use the Theorem.

References

1. J. F. Adams, Lectures on Lie groups, Benjamin, New York and Amsterdam, 1969. MR 40 \# 5780.
2. C. Chevalley, Theory of Lie groups. Vol. 1, Princeton Math. Ser., vol. 8, Princeton Univ. Press, Princeton, N.J., 1946. MR 7, 412.
3. I. Vidav, The group of isometries and the structure of a finite dimensional Banach space, Linear Algebra and Appl. (to appear).

[^0]: Received by the editors May 26, 1975.
 AMS (MOS) subject classifications (1970). Primary 22E15, 22E60; Secondary 46L05, 46L20.

