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Abstract. Let « be a positive integer and F a function defined on a closed

interval /. For x in /, let the «th approximate Peano derivative of F at x, if

it exists, be denoted as F,nJx). For n = 1, the existence of F,n_x,(x) will

simply mean that the function F,0, (= F) is approximately continuous at x.

Then the following theorem is proved, noting that the phrase "for nearly all

x in /" means "for all x in / except perhaps for those points in a countable

subset of /", Theorem A„. Let F,x,(x) exist finitely for all x in I. If F,n,(x)

exists finitely for nearly all x in I and is summable on I, then Fi„-X\ is absolutely

continuous in I.

X. For n = X, Theorem A„ is clearly a generalization of the well-known

result (cf. Goffman [1], where a short transparent proof was given): A function

whose ordinary derivative exists everywhere and is summable is absolutely

continuous. The proof to be given is somehow rather involved. In fact, we

need the following two lemmas, which seem to be interesting by themselves.

Lemma 1. Let F be approximately continuous in I and

lim supap|F(x + h) - F(x)\/\h\ < +oo

for nearly all x in I. Then F is [A CG] on I.

That F is [ACG] on / means that / is the union of countably many closed

sets on each of which the function F is AC (i.e., absolutely continuous in the

wide sense, see Saks [6]). Note that Saks' definition of ACG does not require

the sets involved to be closed. However, his definition requires the function to

be continuous. This ensures that a function ACG in Saks' sense is [ACG] since

if a continuous function is AC on a set, it is AC on the closure of this set.

Lemma 2. Let H have the Darbouxproperty and be [,4CG] on I. IfH^ix) = 0

for almost all x in I, then H is constant on I.

Lemma 1 seems to be known for a long time (see Ridder [5]). We will give

it a brief proof. Lemma 2 can be obtained from a theorem in [4], which gives

an interesting characterization for monotone functions. However, we choose

to give Lemma 2 a direct proof here.

We are unable to obtain a result similar to Lemma 1 for the proof of
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Theorem A„ for « > 2. Instead, for the proof to be given for « > 2, we will

base on the following two results. The first one, Theorem 1, is known (see Saks

[6, p. 191]) and, in fact, its application in the study of AC property for

everywhere differentiable functions is also well known (see, e.g. Rudin [7]).

The second one, Theorem 2, is recently due to the author [3].

Theorem 1. Let f be summable on I. Then for each e > 0 there exists a lower

semicontinuous summable function g such that gix) > — oo and gix) > fix) for

all x in I and

fcdgix)dx<e+fcdfix)dx

for all c, d in I with c < d.

Theorem 2. Let « > 2 and suppose that H¡_x\ix) exists finitely for all x in I.

IfuHn\ix) > Ofor almost all x in I and uHn\ix) > —oo for nearly all x in I, or

more generally, if u^H^ix) > 0 for almost all x and w0 Hn\ix) > —oofor nearly

all x in I, then Hln_x\ is monotone increasing and continuous in I.

Here, as in [3] uHn\ix) is the «th upper approximate Peano derívate of H

at x, while u0H<\ix) denotes the extended real number obtained by taking in

the definition of uHJx) the ordinary lim sup instead of the approximate lim

sup. Later on in the proof of Theorem An, we will also use lHin\(x) and

/0 Hin\ ix) to denote the corresponding lower values.

2. Proof of Lemma 1. For each positive integer « and each x in /, let

P(«,x) = {y: \F(y) — F(x)\ < n\y — x\), and let P„ be the set of all x such

that |P(«,x) n J\ > \\J\ for all intervals J G I with x in J and |/| < 1/«.

Then as P is approximately continuous in /, one shows that for any xx, x2 in

the closure of P„ with | x2 - xx | < 1/«,

|P(x2) - P(x,)| < n\x2 - xx\.

Hence, P is AC on the closure of each P„.

Now, let P be the set of all points x such that

lim supap|P(x + «) - P(jc)|/|«| < +00.

Then the set S = I ~ P is at most countable, say 5 = {y\,yi,yi, ■ • • }> and

denote Sj = [yj] fory = 1, 2, 3, ..., Pis AC on each S, since it is a singleton.

On the other hand, each x in P is a point in P„ for some «. Hence, letting C„

be the closure of En for all «, one has / = [UC„] U [ U 5,], a union of

countably many closed sets on each of which P is AC.

3. Proof of Lemma 2. Let G be the set of all points x in I such that H is

constant on Jx n / for some open interval Jx containing x. Then G is open in

P Suppose G ¥= I. We will reach a contradiction. To see this, consider the

nonempty closed set P = / ~ G. Since H is [ACG] on /, it follows from the

Baire category theorem that there exists ic,d) G I such that (c, d) fl £^0

and H is AC on [c, d] n P = P. Note that in each closed interval contained

in [c, d] ~ P, the function H is constant. Hence in the closure of each interval
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contiguous to P (with respect to [c, d]), H is constant since H has the Darboux

property. Then it follows easily that H, being AC on the closed set P, is AC

on the whole interval [c, d\. Now, using this fact as well as that H,x\ix) = 0 for

almost all x in [c, d), we show that H is constant on [c, d\. It clearly suffices to

show that Hid) = Hie). To this end, let e > 0 be given but arbitrary, and let

A be the set of all x in [c, d] such that there exists a sequence of points x¡ with

x¡ ¥= x and x¡ -* x such that \Híx¡) - Híx)\ < e\x¡ — x\. Then \A\ = d — c

since Hffiix) = 0 for almost all x in [c,d]. Furthermore, the family of all

intervals with x and x¡ as the end points covers A in the Vitali sense. Hence

for each 5 > 0, there exists a finite set {[^,7^.]} of mutually exclusive intervals

from the family such that 2 iy'k ~ ä) ^ (d — c) — 8. Then 2 [tj ~ tj) < 0,

where {(iy, tj)} is the set of all subintervals of [c,d] complementary to the set

{[>fc,.y)fc]}-  As  H is  AC  on  [c,d],   choosing  8  small  enough,  one  has

2 \Hit'j) - Hitj)\ < e.

\Hid) - H(c)\ < 2 \Hiy'k) - Hiyk)\ + 2 Wfi - ti(tj1\

< e2i/k-yk) + £ < e[d-c+ 1].

As e is arbitrary, we conclude that Hid) = Hie). Thus, we have proved that

H is constant on [c, d], contradicting the fact that (c, d) n E ^ 0. Hence we

must have G = I. Then, using the Heine-Borel theorem, one sees easily that

H is constant on /, completing the proof.

4. Proof of Theorem A„. Let Kix) = f£ F,Jt) dt for all x in /, where a is the

left end point of /. Then it is well known that K is AC on / and K\x) = F, Jx)

for almost all x in /.

(i) For the case n = X, consider the function H = K — F. Clearly, H is

approximately continuous in / and hence H has the Darboux property in /.

Furthermore, noting that F is [ACG] on / by Lemma 1, one sees that H, as a

difference of an AC and an [ACG] function, is [ACG] on /. It then follows from

Lemma 2 that H is constant on / since H^Jx) = K\x) — Fi^ix) = 0 for

almost all x in /. Hence F i= K — H) is AC on /.

(ii) For the cases n > 2, let / = F,^, and for each e > 0 let g he as in

Theorem 1. Then consider the function H = G — F, where G is a function

such that its (n - l)th ordinary derivative G^n~x\x) = Mix) = ff gi')dt.

Then H(n_x) = G{n~x> - F{n_x) = M - F{n_x) on /. We will show further that

u0H^ix) > 0 for nearly all x in / (see the remark following Theorem 2 for

the notations involved). To this end, note first that l0M^xJx) > g(x) for all x

in / since g is lower semicontinuous in L Furthermore, by a simple application

of the following easy inequality (see Hobson [2])

..    .  .A(h) .   ..    . .A'ih)
hmmîm>hmmfWr

one has IqG^Íx) > l0M^ix) for all x in /. Hence
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«6#(„)(*)  >  uH(n)(X) >  lG(n)(x)-uFn(x)

> loG{n)(x) - uF(n)(x) > l0M{x)(x) - uF{n)(x)

> g(x) - uF,„\(x)

for all x in I. But uF^x) = P^ ^ ±00 for nearly all x in /, so that one has

that u0H^(x) > g(x) - Ftn)(x) > 0 for nearly all x in /. Therefore, applying

Theorem 2, one has that Ht„-\\ is monotone increasing in /. Hence

Vl)^) - F(n-l)(c) < M(d) - M(c) < e+fcdf(t)dt

for all c, din I with c < d. But since e is arbitrary, one concludes that

4-1)00 - Vi)W < i?f®dt = K(d) - K(c).

Replacing, in the above argument, P by —P, one obtains the inverse of the

above inequality. Hence one concludes that the above inequality is, in fact, an

equality. Therefore, P(„_i\ is AC on / since K is.

5. Further remarks and acknowledgement. It is clear that Lemma 1 and

Theorem 2 are more general than what is required for the proof of Theorem

A„. If the full force of both results are used, a slight modification of the proof

of Theorem A„ yields the following improvement.

Theorem B„. Let P„_i)(x) exist finitely for all x in I, and P(„)(x) exist finitely

for almost all x in I ana be summable on I. If uF<\(x) < +00 and lFrn\(x)

> —00 for nearly all x in I, then P(„_[\ is absolutely continuous in I.

We remark that Bagby and Ziemer in a recent paper [8] have mentioned

that C. J. Neugebauer has proved the following result: A function whose

approximate derivative exists everywhere and is summable is absolutely

continuous. This is slightly less general than Theorems Ay or B0 here. On the

other hand, in their paper [8] concerning functions of several real variables,

Bagby and Ziemer have also established, among others, a result containing

Neugebauer's result. The comparison of the results here and some in [8] for

the special case of functions of a single real variable seems worthwhile to make

a further detailed study in another paper.

The author wishes to thank the referee, who, among others, suggested the

improved version of Lemma 1 and drew the author's attention to references

[7] and [8].
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