SUBNORMAL SHIFTS WITH OPERATOR-VALUED WEIGHTS¹

P. GHATAGE

ABSTRACT. A criterion for a shift with operator-valued weights to be subnormal is given. From this a different proof of a theorem of Berger and Sarason is deduced.

The purpose of this note is to give an extension of a well-known theorem due to Berger and Sarason [2, p. 895]. A similar result was obtained by Gellar and Wallen [3]. Our method gives a new proof of their result.

THEOREM 1. Let \mathcal{K}_0 be a Hilbert space, $\{A_i\}_{i=0}^{\infty}$ be a sequence of nonnegative invertible operators on \mathcal{K}_0 satisfying $\sup \|A_i\| = 1$. Then the operator T on $\mathcal{K} = \mathcal{K}_0 \oplus \mathcal{K}_0 \oplus \cdots$ defined by $T\{x_0, x_1, \ldots\} = \{0, A_0 x_0, A_1 x_1, \ldots\}$ is subnormal if and only if there exists a positive operator valued measure Φ on [0, 1] taking values in $\mathcal{E}(\mathcal{K}_0)$ such that for $n \geq 0$, $B_n^* B_n = \int_0^1 t^n d\Phi(t)$ where $B_0 = 1$ and $B_n = A_{n-1} \cdots A_0$ for $n \geq 1$. Moreover whenever T is subnormal, there exists a Hilbert space \mathcal{K}_0 containing \mathcal{K}_0 and a positive operator R on \mathcal{K}_0 such that the minimal normal extension S of T is given by $S\{y_n\}_{-\infty}^{\infty} = \{z_n\}_{-\infty}^{\infty}$ where $y_0 \in \mathcal{K}_0$, $y_n \in \overline{Range R}$ for $n \neq 0$ and $z_n = Ry_{n-1}$ for all n.

PROOF. If T is subnormal and S is a normal extension of T acting on \mathcal{K} , such that ||S|| = ||T|| = 1, let E(t) be a spectral measure defined on [0, 1] such that $S^*S = \int_0^1 t \, dE(t)$ and let $\Phi(t) = P_0 E(t) P_0$ where P_0 is the projection of \mathcal{K} on \mathcal{K}_0 . Then for x_0 , y_0 in \mathcal{K}_0 ,

$$(B_n^* B_n x_0, y_0) = (T^n \{x_0, 0, \dots\}, T^n \{y_0, 0, \dots\})$$

= $(S^n S^n \{x_0, 0, \dots\}, \{y_0, 0, \dots\}) = \int t^n d(\Phi(t) x_0, y_0).$

Hence $B_n^* B_n = \int_0^1 t^n d\Phi(t)$.

Conversely if $\Phi(t)$ is a positive operator valued measure on [0,1], by Naimark's theorem [1, p. 74] there exists a Hilbert space \mathcal{K}_0 containing \mathcal{K}_0 and a spectral measure E(t) on [0, 1] such that if P_0 is the projection of \mathcal{K}_0 on \mathcal{K}_0 , $\Phi(t) = P_0 E(t) P_0$. Let $R = \int_0^1 t^{1/2} dE(t)$. For $n \ge 0$, define $U_n : \mathcal{K}_0 \to \mathcal{K}_0$ by $U_n(x_0) = R^n B_n^{-1} x_0$. Since

Received by the editors June 20, 1975.

AMS (MOS) subject classifications (1970). Primary 47A99.

Key words and phrases. Shift, subnormal, normal extension, moment problem.

¹ Work supported by the National Research Council of Canada under Grant A-5211.

108 P. GHATAGE

$$||B_n x_0||^2 = (B_n^* B_n x_0, x_0) = \int_0^1 t^n d(\Phi(t) x_0, x_0)$$
$$= \int_0^1 t^n d(E(t) x_0, x_0) = ||R^n x_0||^2,$$

it follows that U_n is an isometry. Let $\mathfrak{R} = \{\{y_n\}_{-\infty}^{\infty}, y_n \in K_0 \text{ for } n \neq 0, y_0 \in \mathbb{R} \text{ Range } R\}$ and define S on \mathfrak{R} by $S\{y_n\}_{-\infty}^{\infty} = \{Ry_{n-1}\}_{-\infty}^{\infty}$. Then S is a bounded normal operator. We now seek an embedding $U: \mathfrak{R} \to \mathfrak{R}$ such that SU = UT. Let U be defined by $U\{x_0, x_1, x_2, \ldots\} = \{z_n\}_{-\infty}^{\infty}$ where $z_n = 0$ for n < 0, $z_n = U_n x_n$ for $n \ge 0$. Clearly U is an isometry. Since $U_n B_n = R^n$ and $A_n = B_{n+1} B_n^{-1}$, it follows that SU = UT. It is easy to see that if we choose E to be the minimal dilation of Φ , S becomes the minimal normal extension of T.

REMARK. When \mathcal{K}_0 is the space of complex numbers, S is easily seen to be equivalent to the normal operator defined by Berger (see [2, pp. 895–896]).

BIBLIOGRAPHY

- 1. P. A. Fillmore, *Notes on operator theory*, Van Nostrand Reinhold Math. Studies, no. 30, Van Nostrand Reinhold, New York, 1970. MR 41 #2414.
- 2. P. R. Halmos, Ten problems in Hilbert space, Bull. Amer. Math. Soc. 76 (1970), 887-933. MR 42 #5066.
- 3. R. Gellar and L. J. Wallen, Subnormal weighted shifts and the Halmos-Bram criterion, Proc. Japan Acad. 46 (1970), 375-378.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF TORONTO, TORONTO, CANADA M5S 1A1