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DIOPHANTINE INEQUALITIES WITH MIXED
POWERS (mod 1)

R. J. COOK

Abstract.   A theorem of Heilbronn on the distribution of the sequence

n29 (mod 1) is extended to sums of mixed powers.

1. Introduction. In 1948 Heilbronn [6] proved that for any e > 0 there exists

C(e) such that for any real 9 and N > 1 there is an integer x satisfying

(1) 1 < x < N   and    \\9x2\\ < C(e)A-'/2+£,

where ||a|| denotes the difference between a and the nearest integer, taken

positively. The result has been extended in several directions. In particular, in

[2] an analogous result was obtained for the fractional parts of an additive

form

(2) 0,xï + ••• + 9,xk
11 J     J

of degree k. Here we shall prove analogous results for mixed powers.

Theorem 1. Let 2 < A:, < • • ■ < ks be integers, K¡ = 2ki~x and

(3) I = Kx-X + ■■■ + K~x.

If I > 1 then for any e > 0, A' > 1 and real 9X, ..., 9S there exist integers

X], ..., xs such that

(4) 0 < max|x,| < N   and    \\9xxkxx + ■■■ + 9sxk*\\ < CN~x+e,

where C depends only on kx, .. ., ks and e.

Example 1. Let kx = 2, k2 = /c3 = 3. For any e > 0 there is a constant

C = Cíe) such that for any N > 1 and real 9X, 92, #3 there are integers xx,x2, x3

satisfying

0<max|x,|<A   and   \\9xxf + 92x\ + 93x¡\\ < CN -l+e

Theorem 2. Let 2 <£,<■••< ks be integers and let I be defined by (3). //

/ < 1 then for any e > 0, N > 1 and real 9X, .. ., 9S there exist integers

xx, ..., xs satisfying

-
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(5) 0 < maxIx,-1 < N   and   \\9xx^ + ■■■ + 9sx**\\ < CN-*/^'1^^,

where C depends only on kx, ..., ks and e.

Example 2. Let kx = 2, k2 = 3. For any e > 0 there is a constant C = C(e)

such that for any N > 1 and real 9X, 92 there are integers xx, x2 satisfying

0 < max|x,| < N   and    \\9xx¡ + 92x%\\ < CN'2'^.

Example 3. Let s = k - 1, kx = 2, k2 = 3, ..., ks = k. For any e > 0

there is a constant C = C(e) such that for any N > 1 and real 9X, ..., 9k _, there

are integers xx, ..., xk_x satisfying

0 < max|x,| < N   and    \\9xx\ + 92x\ + ■■■ + 9k_xxkk_x || < CN~x+x/k+e.

Recently Chong and Liu [1] obtained an analogue of Heilbronn's theorem

for the sum Px(xx) + ■ • ■ + Ps(xs) of j polynomials, having no constant term,

where each of the polynomials is of exact degree k. They proved that if í > K

then the inequalities

(6) 0 < max|x,.| < N,        \\Px(xx) +■■■ + B(xs)\\ « N~x/K+e

have a solution. However, if one of the polynomials, Px say, is of degree at

most k - 1 then Davenport [3] has shown that there is an integer x satisfying

1 < x < W and   ||P,(»H « Ai-i/(*+l)+e.

It therefore appears that an improved estimate for the sum of polynomials

with differing degrees would require an improvement in the estimate when the

degrees are all equal.

2. Preliminary lemmas and notation. We may suppose that e is a small

positive number; let tj be a small positive number which can be chosen as an

explicit function of e. We may suppose that A/ > N0(kx,..., ks, e). By F <sc G

we mean that |P| < CG where C depends at most on kx, ..., ks and e. We

write e(z) for expi>iz).

Lemma 1 (Vinogradov). Let A satisfy 0 < A < \ and let a be a positive

integer. There exists a function t//(z), periodic with period 1, which satisfies

(7) tfz) = 0   for \\z\\ > A

and

(8) 4{z)=    2    aveiyz)
v= — 00

where the av are real numbers, a0 = A, a_v = av and

(9) |fl„| < A min(A,i;-a-1A-û)       (v # 0),

where A depends only on a.
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This is a particular case of Lemma 12 of Chapter 1 of Vinogradov [7].

Lemma 2 (Dirichlet). Let 9 be a real number and Q > 1. Then there exists

an integer q satisfying

(10) 1 < q < Q    and    \\q9\\ < Q~x.

See, for example, Theorem 36 of Hardy and Wright [5].

Lemma 3 (Weyl). Let k > 2 be an integer, K = 2k~x and

(11) P(x) = 9xk + 9k_xxk-x + ■ ■ ■ + 9X x + 90

be a polynomial of exact degree k, i.e. 9 ¥= 0. Let B, N be real numbers with

N > 1. Then for any 17 > 0,

(12) 2       e(P(x))
B<,x<B+N

K / L

« N^(nk-x + NK~k   2   min(A, IMIf1))

where L = k\Nk~x.

See, for example, Lemma 1 of Davenport [4].

3. Proof of Theorem 1. Suppose that Kx~x + ■■ • + K~x < 1 < Kx~x + ■ ■ ■

+ K~x + K~+\ . Since Kx~x + ■ ■ ■ + Kj~x is a rational number whose denomi-

nator divides Kp and K+x is a multiple of K¡, it follows that Kx~x + ■ ■ ■ + K~x

+ Kj~+X = 1. Therefore it is sufficient to prove Theorem 1 when / = 1, since

the general result follows on taking Xj+2 = Xj+3 = • • ■ = xs = 0.

Let M = Nx~e and suppose that \\9xx^ + • • • + 9sxk¡\\ > M~x for 1 < x,

^ N, i — I, ..., s. We apply Lemma 1 with A = M~x and obtain

N N

2   ■••   S   mxki + ---+6sxk')=0.
X, - 1 xs - 1

Therefore

M~XNS + 2 av fi S„(i) = 0   where 5,0) =   2  «M-**')-
f#0       1=1 x=\

Then

(13) M~XNS«  2  kl u |S„(«)I-
i/=l        /=i

Let A/, = Mx+V; then the contribution of those v > Af, is «: N3'"7', and

taking a = [3îj_1] we obtain

m-'aj « 2 kl n \sv(i)\ « m~x 2 n \sv(i)\-
v=\ 1=1 t;=l  1=1

Since / = 1 an application of Holder's inequality gives

s     r Mx -\ 1/AT,

(14) a^« n { 2 \sMKi\  ■
/=i Li/=i J
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Therefore for some value i, for which we write Sv(i), 9¡, k¡, K¡ as Sv, 9,

k and AT respectively, we have NK <K 2^1 \S„\K. Applying Lemma 3 we have

(15) NK <  2 wiA7*"1 + NK~k   2   min(A/, Ili/mOir1)).
p-1 \ m=\ /

The contribution of the first term on the right-hand side is MxNnNK~x

« NK~e+2r> which is o(NK) provided that 17 < e/2. Therefore

ML H

NK « NK~k+ri 2    2   min (A/, Hww»!!-1) « NK~k+2^ 2  min(A/, ||AöH_l)
i/=l m=l /i=l

where A = mv, H = MXL and we have used the fact that the number of

representations of h in the form mv is < Nv. Thus

//
(16) Nk~27) «  2  mini/VjAflir1).

*-l

We take (? = Nk~iv and choose an integer ¿7 satisfying (10). Rearranging

the sum on the right-hand side of (16) into blocks of length q and estimating

in the usual way, see, for example, [4, p. 13], we obtain

(17) A^"2" « (q"XH+ \)(N + q\ogq).

Clearly N = o(Nk~2r'),

q log q « QN7*/2 = o(Nk~2y])    and    H log q « Mx Nk~x+7' « A//c-£+2t)

which is o(Nk~2n) provided that rj < e/4.

Therefore

(18) Nk~2ri «iq-xHN

so that

(19) 67«A/1A/2,).

Then, for N > Afj^i > • • •, ks,e) we have 1 < q < N and

(20) ||9*fl|| < qk~x\\q9\\ < ^"'ô"1 « Mxk~x N-k+(2k + \)r, < N~\

provided that 77 is sufficiently small. Thus x¡ = q, x, = 0 when y =£ i gives a

solution of the inequalities (4), which completes the proof of Theorem 1.

4. Proof of Theorem 2. If the inequalities (5) have no solution we take

t = s/(s + Ks(l — /)), M = N'~e and proceed as for Theorem 1. In place of

(14) we obtain

s     r M, ^ \/K¡

(20 Ns«Mx-'l\ {  2   |S„(i)!*■}     .
1-1 L»-i J

Thus for some i, for which we write 9¡ as 6, etc.,

(22) A//"1 A" « 'it w*}
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Applying Weyl's estimate we have

MXK^X),SNK«  2   IS,I*
"=l

(23)
Mx / L \

2  W/V*"1 + NK~k   2   mini/V.Hwnflir1)).
v=l \ m=\ /

«

Suppose first that

(24) MxK{'-X)/sNK«MxN"NK-x,

then

Nl-n « Mli+^(i-OA « Mi+*r(i-/)A = M]iA_

Therefore  1 — e/t > (1 — n)/(l + 17) and choosing r¡ sufficiently small we

obtain a contradiction. Therefore

H
Mk(l-i)/sNK <<NK-k+2v 2  miniN,\\h9\\'X)

h=\

where h = mv and H = MXL. Hence

(25) mxk{'-x)/sNk~21' «  2  mini/V.HAflir1).
h=\

We take Q = mxk^'-x^sNk~^. Since

(26) t-í(l- /)í/í = k - KÍX - l)/(s + KsiX - I)) > k - 1

we have Q > 1 and so there exists an integer q satisfying (10). Rearranging

the sum on the right-hand side of (25) into blocks of q terms we obtain

(27) jyrJtf-OAjyrfc-ai « ^-1^ + 1)(/y + q log ?)-

Using (26) we have N = oiMxK{l~x^sNk~2ri) and

c log q « ÔA^2 = oíM^'"1^Nk~2,>).

Suppose that

(28) MxK{l~X}1'Nk~2%i « H log c? « M, A*-1+,);

then

A1"3"«A/11 + /:(1-/)/i« A/,'/'.

Therefore 1 - 3tj < (1 +tj)(1 - e/t) which gives a contradiction, provided

that n is sufficiently small. Therefore (28) is false and so

MxK('-X)/sNk-2* « q~x HN

which implies
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Then 1 < q < N and

(29) q « N2vM^ + K(\-l)/s <<c Nl„M\/tm

C A and

11**011 </-'mii <qk~xQ-x

<<; N-k+(2k + \)r,M(k-\)/t + K(l-l)/s <<; N-t+t

since

(k- i   a-(i *¡y\:-j   ,   îa-,(i -/)
-k + t < -+ —- > < -1 + ——- = -t,

\     t s       J s

and this completes the proof of Theorem 2.
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