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ON THE CELLULARITY OF ßX - X

JOHN GINSBURG AND R. GRANT WOODS

Abstract. For a topological space X, let c(X) denote the cellularity of X,

and let k(X) denote the least cardinal of a cobase for the compact subsets of

X. It is shown that, if X is a completely regular Hausdorff space, c(ßX - X )

< 2^x^x\ and examples are given to show that this inequality is sharp. It

is also shown that if X is an extremally disconnected completely regular

Hausdorff space for which c(ßX - X) > 2*w, then ßX - X contains a

discrete C*-embedded subspace of cardinality k(X)   .

1. Preliminaries. Our topological notation and terminology follows that of

[6], The Stone-Cech compactification of a completely regular Hausdorff space

X is denoted by ßX, and the cardinality of a set S is denoted by |S|. The

discrete space of cardinality a is denoted by Dia). The cardinal 2a is denoted

by expa.

Recall that the cellularity of a topological space Y, denoted by c(T), is

defined by c(F) = sup(|§|: § is a family of pairwise disjoint nonempty open

subsets of Y}. A family % of compact subsets of Y is called a cobase for the

compact subsets of Y, if every compact subset of Y is contained in a member

of %. We denote by /c(T) the least cardinality of a cobase for the compact

subsets of Y. The Lindelof number of Y, denoted by L( Y), is the least cardinal

a such that every open cover of Y has a subcover of cardinality < a.

The cardinal invariant k{Y) is discussed by Arhangel' skiï in [1]. Note that

kiY) > L(y) for each noncompact space Y.

Our principal reference for cardinal invariants of topological spaces is [8].

All hypothesized spaces in this paper are assumed to be completely regular

and Hausdorff.

2. The cellularity of ßX — X. Disjoint open subsets of ßX - X are consid-

ered in [3], where the following theorem is established (see 3.3 in [3]).

2.1. Theorem (Comfort-Gordon). Let X be a completely regular space and

let m be a cardinal number. Then the following assertions are equivalent:

ii) the space ßX — X admits a collection of m pairwise disjoint, nonempty open

subsets;

(ii) the space X admits a collection % of cozero sets such that |%| = m and such

that each member of % contains a noncompact zero-set, and, if U, V are distinct

members of % then U fl  V has compact closure in X.

Our estimate for the cellularity of ßX — X uses the Comfort-Gordon result
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quoted above, together with the Erdös-Rado partition relation (expa)+

-► (a+)l (see [5]).

2.2. Theorem. Let X be a completely regular Hausdorff space. Then

c(ßX - X) < exp(c(X)k(X)).

Proof. Let a = c(X)k(X). If a is finite, the theorem is trivial, so we assume

a is infinite. Let % = [K¡ : i < a) be a cobase of cardinality < a for the

compact subsets of X. For the sake of contradiction, suppose c(ßX — X)

> expa. Then there is a family of (expa)+ pairwise disjoint, nonempty open

subsets of ßX — X. (here, as is customary, we denote by m+ the first cardinal

exceeding m). By 2.1 above, there is a family % of cozero-sets in X such that

(i) |%| = (expa)+,

(ii) each member of % contains a noncompact zero-set, and

(iii) if U, V are distinct members of % then U Ci V has compact closure in

X.
Let [%]2 denote the two-element subsets of <&, Let A0 = {{U, V) G [%]2 : U

n V G K0) and if /' < a and Aj has been defined for each j < /', let

A¡ = {{U, V) G [%]2: U n V G K¡) - Uj^Aj. Since % is a cobase for the

compact subsets, [%]2 = Ui<aA¡. By the Erdös-Rado partition relation

(expa) -> (a+)a (see Theorem 39 of [5]), there is a subfamily <3l[ of % such

that (%! | = a+, and an i < a, such that {i/, F) E A¡ for all pairs U, V of

members of %. Now, let S = [U - AT,: U G %). Then g is a family of a+

pairwise disjoint, nonempty open subsets of X. This is impossible, since

c(X) < a. This contradiction shows that c(ßX — X) < expa, proving 2.2.

The following proposition can be established in a straightforward manner.

Its proof is left to the reader.

2.3. Proposition. Let X be locally compact, and not compact. Then k(X)

= un
2.2 and 2.3 yield the following corollary.

2.4. Corollary.    Let    X    be    locally    compact.    Then    c(ßX - X)

< exp(c(A)L(A)). In particular, if X is locally compact and o-compact, then

c(ßX-X)< exp(c(X)).

We now give examples to illustrate the sharpness of the inequality in 2.2.

2.5. Examples, (i) For each « G N, let Xn be a copy of the one-point

compactification of the discrete space of cardinality exp exp N0. Let X be the

free union of the X„. Clearly X admits a collection of exp exp N0 disjoint,

countable,  discrete,  open-and-closed  subsets.  It  follows  that c(ßX — X)

> exp exp N0.   However,   since   k(X) = L(X) = K0,   we  have  exp (A: (A))

< c(^A^ - X). This shows that the number c(X) cannot be removed from the

exponent in 2.2.

(ii) Let a be any cardinal number greater than or equal to expN0, and let X

be the product of expa copies of the two-point discrete space {0,1}. Write X

as n,<expa %i where, for each ;', X¡ = (0, lj.Let S = [x G X: {i < expa: x¡

¥" 0} is countable}. By Theorem 2 in [7], /?2 = X. Now for each / < exp a,

let a¡ be that point in X whose j'th coordinate is 0 and whose jth is 1 for y # ;.

Then the subspace S = [a¡ : i < exp a) of X is homeomorphic to £>(exp a). Let
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Y = X - S. Then 2 C Y G X = 02, so by 6.7 of [6], ßY = X and ßY - Y
= S. Now T is a dense subset of X, so X and Y have the same cellularity.

Since A1 is a product of separable spaces, ciX) = N0 (see Corollary 14 in [2]),

and thus c(T) = N0. Obviously cißY - Y) = expa, and so cißY - Y)

> exp(c(T)). This shows that the number k(X) cannot be removed from the

exponent in 2.2. It also shows that the gap between c(T) and cißY — Y) can

be made arbitrarily large. If one wants a locally compact example of the same

phenomenon, let p denote the point of X all of whose coordinates are 1, let

T = S U {p), and put U = X - T. T is a copy of the one-point compactifi-

cation of S, and hence U is locally compact. As above, X = ßU, c(tV) = H0,

and cißU — U) = expa.

(iii) let X he the countable discrete space. Then c(A') = kiX) = H0 and

cißX — X) = c. This shows equality may be attained in 2.2.

(iv) Trivial examples show that the inequality in 2.2 can be strict. For

example let p he a point of ßN - N and let X = ßN - {p). Then cißX - X )
< 2c(X)k(X)_

Thus, in the sense described by the above examples, the inequality in 2.2 is

best possible.

We conclude this note with the following result. Properties of extremally

disconnected spaces used below may be found in 1H and 6M of [6].

2.6. Theorem. Let X be an extremally disconnected space. If cißX — X)

> exp(/c(Ar)) then ßX — X contains a discrete C*-embedded subspace D of

cardinality kiX)   .

Proof. Arguing exactly as in the proof of 2.2, we find a compact subset K

of X and a family § of kiX)+ pairwise disjoint nonempty open subsets of X

each of which is disjoint from K and none of which is relatively compact in X.

Since ßX is extremally disconnected, disjoint members of % have disjoint ßX-

closures. The open subspace ßX — K of ßX is extremally disconnected, so its

open subspace T = U {cl^ G - K: G G §) is C*-embedded in ßX - K. For

each G G S let p(G) denote a point in cl^ G — X. Then (p(G): G G §} is a

discrete subspace D of ßX - X of cardinality kiX)+. Iff G C*(D), define a

function g from T to the real numbers by g[clßX G — K] = {/(p(G))}.Then

g G C*iT), and can be continuously extended to h G C*ißX — K). Then

h\ßX - X is a continuous extension of /to ßX - X. Hence D is C*-embedded

in ßX - X.

2.7. Corollary. // X is a locally compact extremally disconnected space and

ifcißX - X) > expikiX)), then ßX - X contains a copy of ßD where D is the

discrete space of cardinality kiX)+.

The above result is of some interest when contrasted with the theorem of

Efimov [4, Theorem 8], that if A" is a compact space of weight greater than

expexpexpa and c(AT) < a, then K contains a copy of each extremally

disconnected space of weight no larger than (expa)+, and thus contains a

copy of ßDia) (and also a copy of /?D(a+) if we assume that (expa)

= exp(a+)). Efimov's result hypothesizes an upper bound on the cellularity of

the space under question, while 2.7 above hypothesizes a lower bound on the

cellularity of the space.
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Finally, we note that k(X) could be replaced in 2.6 and 2.7 by any cardinal

greater than k(X), and the results would remain valid.

The authors do not know whether 2.2 and 2.6 remain valid if k(X) is

replaced by L(X).
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