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PRIMITIVE IDEALS IN GROUP RINGS OF
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ABSTRACT. If Fis a field which is not algebraic over a finite field and G is
a polycyclic group, then all primitive ideals of the group ring F[G] are
maximal if and only if G is nilpotent-by-finite.

We recall that a primitive ring is a ring with a faithful irreducible module.
An ideal is primitive if the factor ring is a primitive ring.

If Fis a field algebraic over a finite field and G a polycyclic group, then
Roseblade has recently shown that every irreducible module for the group ring
F[G] is finite dimensional [5]. This implies that the primitive factor rings are
simple Artin. On the other hand, if F is any other field and G is not abelian-
by-finite, then Hall observed that F[G] has infinite dimensional irreducible
modules [2]. If G is finitely generated nilpotent, Zalesskii proved that the
primitive factor rings are at least simple for any field F [6]. In this paper we
offer a converse to Zalesskil’s theorem by proving the

THEOREM. If F is a field which is not algebraic over a finite field and G is a
polycyclic group, then all primitive ideals of the group ring F[G] are maximal if
and only if G is nilpotent-by-finite.

We warn the prospective reader of Zalesskii’s paper [6] that the word
“primitive” has been translated as prime throughout.

LeMMA 1. If G is polycyclic and H is a subgroup of finite index with all primitive
ideals of F[H)] maximal, then all primitive ideals of F|G) are also maximal.

PrOOF. The proof of Theorem 3 in [6] applies.

LEMMA 2. Let G be polycyclic and H a subgroup of finite index in G. If F[H]
has a nonmaximal primitive ideal, then F[G] does also.

ProoF. By Lemma 1, we may assume H is normal in G. Let P be a primitive
ideal of F[H ] properly contained in a maximal ideal Q. Let 1 = g;, g5, ..., &,
be a set of coset representatives for H in G. Let P = M/_,g; ' Pg; and O
= N8 'Qg;. P & O since equality would imply that P D g;Qg;! for
some i and hence P would be maximal. Let ¥ be an irreducible F[H] module
with annihilator P. V = V ®fm F [G] has finite length as an F[H] module
and hence as an F[G] module. Let0 = W, C W; C --- C W, = Vbea F[G]

composition series for V. The annihilator of Vis PG. QG is a two-sided ideal
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and hence can be embedded in a maxima_l ideal M. Let P, = Ann (W,/W,_,)
Since B, P._, - - - P, annihilates V, BB_, --- P, C PG C QG C M. Hence M
contains P for some i. Now W/ W_l contams a copy of Vg, for some j and
hence contains a copy of Vg; for each . Hence P, N F[H]
= Anngy) W/W_, = N_; Ann (Vg,) P. Since MnN F[H] 2 0G
N F[H] = Q, we have P, & M and P, is a nonmaximal primitive ideal.

PROOF OF THEOREM. If G is nilpotem-by-ﬁnite, the result follows from
Zalesskii [6] and Lemma 1. Conversely suppose G is not nilpotent-by-finite.
Pick a subgroup K maximal among the subgroups with N = 9% ;(K) of finite
index and N/K not nilpotent-by-finite. Using Lemma 2, we may assume K is
normal. Also since F[G/K] is a homomorphic image of F[G] we assume
K = 1. The finite conjugate subgroup of G is trivial. Otherwise G has a
nontrivial normal subgroup H whose centralizer C has finite index. C/C N H
= CH/H is nilpotent-by-finite by the maximality of K. Also C N H is central
in C and hence C and therefore G is nilpotent-by-finite, a contradiction. Let
A be a maximal abelian normal subgroup. G contains a subgroup G, of finite
index such that 4 contains a normal subgroup B of G, with the property that
G, and all of its subgroups of finite index act rationally irreducibly on B [5,
Lemma 2]. By Lemma 2, we assume G = G,. A4 is torsion free since G has
trivial finite conjugate subgroup. The rank of B is at least two for the same
reason. We may clearly replace B with QB N A. QA is a Q[G/A] module and
OB is an irreducible submodule. We claim that Q4 is an essential extension
of QB. Suppose to the contrary that T is a nontrivial Q[G/A4] submodule with
T N QB =0.T N A is anontrivial normal subgroup of G and G/(T N A) is
nilpotent-by-finite. This is impossible since G/T N A contains an isomorphic
copy of B and the rank of B is at least two. Again using Lemma 2, we may
assume G/B is nilpotent. Let U/QB be an irreducible Q[G/4] submodule of
QA/QB. U N A/B must intersect the center of G/B nontrivially. Therefore,
U/QB must have Q dimension 1. Clearly Ann (U) C Ann (QB). If P
= Ann U/QB and P, = Ann QB, then P, # P, since Q[G/A]/P
= Q and Q[G/A]/P, has dimension greater than 1. If Ann U = Ann Q'B,
then P, C P;, but this is impossible since each has cofinite dimension and
hence are maximal. Therefore, Ann (U) & Ann (QB). By [4], there is an
x # 0 in the center of Q[G/A]/Ann (U) with x in Ann (QB)/Ann (U). x
induces an isomorphism of U/QB onto QB. But this is impossible. Therefore,
we have Q4 = OB and hence A = B. We now show C(B) = B. If not, take
xin C(B) — Bwith xB in Z(G/B) N C(B)/B. Then D = {x, B) is an abelian
normal subgroup contradicting the maximality of 4 = B. Since F is not
algebraic over a finite field, there exists a monomorphism of B into the
multiplicative group of F. This defines an F[B] module structure on F. We
denote this module by V. Let P = Anngp V. V= V ®i) F[G] is an
irreducible F[G] module. This follows since if g, and g, are in dlﬂ'erent cosets
of B, then Vg, and ng are not isomorphic as F[B] modules since C[B] = B.
This implies g; Pg;”' # g, Pg; ' Annihilator of Vis (N einG8P8 NG. But this
is zero by Bergman’s theorem [1] Hence Ann (V) is a nonmaxlmal primitive
ideal.

The proof can be simplified considerably if F is a large field. More
specifically, if the transcendence degree F is larger than the rank of G, a



10 R. L. SNIDER

theorem of Passman may be applied to produce lots of primitive ideals easily

[3].
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