PRIMITIVE IDEALS IN GROUP RINGS OF POLYCYCLIC GROUPS

ROBERT L. SNIDER

ABSTRACT. If F is a field which is not algebraic over a finite field and G is a polycyclic group, then all primitive ideals of the group ring F[G] are maximal if and only if G is nilpotent-by-finite.

We recall that a primitive ring is a ring with a faithful irreducible module. An ideal is primitive if the factor ring is a primitive ring.

If F is a field algebraic over a finite field and G a polycyclic group, then Roseblade has recently shown that every irreducible module for the group ring F[G] is finite dimensional [5]. This implies that the primitive factor rings are simple Artin. On the other hand, if F is any other field and G is not abelian-by-finite, then Hall observed that F[G] has infinite dimensional irreducible modules [2]. If G is finitely generated nilpotent, Zalesskii proved that the primitive factor rings are at least simple for any field F [6]. In this paper we offer a converse to Zalesskii's theorem by proving the

THEOREM. If F is a field which is not algebraic over a finite field and G is a polycyclic group, then all primitive ideals of the group ring F[G] are maximal if and only if G is nilpotent-by-finite.

We warn the prospective reader of Zalesskii's paper [6] that the word "primitive" has been translated as prime throughout.

LEMMA 1. If G is polycyclic and H is a subgroup of finite index with all primitive ideals of F[H] maximal, then all primitive ideals of F[G] are also maximal.

PROOF. The proof of Theorem 3 in [6] applies.

LEMMA 2. Let G be polycyclic and H a subgroup of finite index in G. If F[H] has a nonmaximal primitive ideal, then F[G] does also.

PROOF. By Lemma 1, we may assume H is normal in G. Let P be a primitive ideal of F[H] properly contained in a maximal ideal Q. Let $1 = g_1, g_2, \ldots, g_n$ be a set of coset representatives for H in G. Let $\overline{P} = \bigcap_{i=1}^n g_i^{-1} P g_i$ and $\overline{Q} = \bigcap_{i=1}^n g_i^{-1} Q g_i$. $\overline{P} \subseteq \overline{Q}$ since equality would imply that $P \supseteq g_i Q g_i^{-1}$ for some i and hence P would be maximal. Let V be an irreducible F[H] module with annihilator P. $\overline{V} = V \otimes_{F[H]} F[G]$ has finite length as an F[H] module and hence as an F[G] module. Let $0 = W_0 \subseteq W_1 \subseteq \cdots \subseteq W_n = \overline{V}$ be a F[G] composition series for \overline{V} . The annihilator of \overline{V} is $\overline{P}G$. $\overline{Q}G$ is a two-sided ideal

Received by the editors March 7, 1975.

AMS (MOS) subject classifications (1970). Primary 16A26.

and hence can be embedded in a maximal ideal M. Let $P_i = \operatorname{Ann}(W_i/W_{i-1})$. Since $P_n P_{n-1} \cdots P_1$ annihilates \overline{V} , $P_n P_{n-1} \cdots P_1 \subseteq \overline{P}G \subseteq \overline{Q}G \subseteq M$. Hence M contains P_i for some i. Now W_i/W_{i-1} contains a copy of Vg_j for some j and hence contains a copy of Vg_j for each j. Hence $P_i \cap F[H] = \operatorname{Ann}_{F[H]} W_i/W_{i-1} = \bigcap_{i=1}^n \operatorname{Ann}(Vg_i) = \overline{P}$. Since $M \cap F[H] \supseteq \overline{Q}G \cap F[H] = \overline{Q}$, we have $P_i \subseteq M$ and P_i is a nonmaximal primitive ideal.

PROOF OF THEOREM. If G is nilpotent-by-finite, the result follows from Zalesskii [6] and Lemma 1. Conversely suppose G is not nilpotent-by-finite. Pick a subgroup K maximal among the subgroups with $N = \mathfrak{N}_{G}(K)$ of finite index and N/K not nilpotent-by-finite. Using Lemma 2, we may assume K is normal. Also since F[G/K] is a homomorphic image of F[G] we assume K=1. The finite conjugate subgroup of G is trivial. Otherwise G has a nontrivial normal subgroup H whose centralizer C has finite index. $C/C \cap H$ $\cong CH/H$ is nilpotent-by-finite by the maximality of K. Also $C \cap H$ is central in C and hence C and therefore G is nilpotent-by-finite, a contradiction. Let A be a maximal abelian normal subgroup. G contains a subgroup G_1 of finite index such that A contains a normal subgroup B of G_1 with the property that G_1 and all of its subgroups of finite index act rationally irreducibly on B [5, Lemma 2]. By Lemma 2, we assume $G = G_1$. A is torsion free since G has trivial finite conjugate subgroup. The rank of B is at least two for the same reason. We may clearly replace B with $OB \cap A$. OA is a O[G/A] module and OB is an irreducible submodule. We claim that OA is an essential extension of OB. Suppose to the contrary that T is a nontrivial O[G/A] submodule with $T \cap QB = 0$. $T \cap A$ is a nontrivial normal subgroup of G and $G/(T \cap A)$ is nilpotent-by-finite. This is impossible since $G/T \cap A$ contains an isomorphic copy of B and the rank of B is at least two. Again using Lemma 2, we may assume G/B is nilpotent. Let U/QB be an irreducible Q[G/A] submodule of QA/QB. $U \cap A/B$ must intersect the center of G/B nontrivially. Therefore, U/QB must have Q dimension 1. Clearly Ann $(U) \subseteq \text{Ann } (QB)$. If P_1 = Ann U/QB and P_2 = Ann QB, then $P_1 \neq P_2$ since $\cong Q$ and $Q[G/A]/P_2$ has dimension greater than 1. If Ann U = Ann QB, then $P_2 \subseteq P_1$, but this is impossible since each has cofinite dimension and hence are maximal. Therefore, Ann $(U) \subseteq \text{Ann } (QB)$. By [4], there is an $x \neq 0$ in the center of Q[G/A]/Ann(U) with x in Ann (QB)/Ann(U). x induces an isomorphism of U/QB onto QB. But this is impossible. Therefore, we have QA = QB and hence A = B. We now show C(B) = B. If not, take x in C(B) - B with xB in $Z(G/B) \cap C(B)/B$. Then $D = \langle x, B \rangle$ is an abelian normal subgroup contradicting the maximality of A = B. Since F is not algebraic over a finite field, there exists a monomorphism of B into the multiplicative group of F. This defines an F[B] module structure on F. We denote this module by V. Let $P = \operatorname{Ann}_{F[B]} V$. $\overline{V} = V \otimes_{F[B]} F[G]$ is an irreducible F[G] module. This follows since if g_1 and g_2 are in different cosets of B, then Vg_1 and Vg_2 are not isomorphic as F[B] modules since C[B] = B. This implies $g_i Pg_1^{-1} \neq g_2 Pg_2^{-1}$. Annihilator of \overline{V} is $(\bigcap_{g \in G} gPg^{-1})G$. But this is zero by Bergman's theorem [1]. Hence Ann (\overline{V}) is a nonmaximal primitive ideal.

The proof can be simplified considerably if F is a large field. More specifically, if the transcendence degree F is larger than the rank of G, a

10 R. L. SNIDER

theorem of Passman may be applied to produce lots of primitive ideals easily [3].

REFERENCES

- 1. G. M. Bergman, The logarithmic limit-set of an algebraic variety, Trans. Amer. Math. Soc. 157 (1971), 459-469. MR 43 #6209.
- 2. P. Hall, On the finiteness of certain soluble groups, Proc. London Math. Soc. (3) 9 (1959), 595-622. MR 22 #1618.
 - 3. D. S. Passman, Primitive group rings, Pacific J. Math. 47 (1973), 499-506.
- 4. J. E. Roseblade, The integral group rings of hypercentral groups, Bull. London Math. Soc. 3 (1971), 351-355. MR 45 #408.
- 5. ——, Group rings of polycyclic groups, J. Pure Appl. Algebra 3 (1973), 307-328. MR 48 #11269.
- 6. A. E. Zalesskii, Irreducible representations of finitely generated nilpotent torsion free groups, Mat. Zametki 9 (1971), 199-210 = Math. Notes 9 (1971), 117-123. MR 46 #1912.

DEPARTMENT OF MATHEMATICS, VIRGINIA POLYTECHNIC INSTITUTE AND STATE UNIVERSITY, BLACKSBURG, VIRGINIA 24061