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Abstract. If F is a field which is not algebraic over a finite field and G is

a polycyclic group, then all primitive ideals of the group ring F[G] are

maximal if and only if G is nilpotent-by-finite.

We recall that a primitive ring is a ring with a faithful irreducible module.

An ideal is primitive if the factor ring is a primitive ring.

If F is a field algebraic over a finite field and G a polycyclic group, then

Roseblade has recently shown that every irreducible module for the group ring

F[G] is finite dimensional [5]. This implies that the primitive factor rings are

simple Artin. On the other hand, if F is any other field and G is not abelian-

by-finite, then Hall observed that F[G] has infinite dimensional irreducible

modules [2]. If G is finitely generated nilpotent, Zalesskiï proved that the

primitive factor rings are at least simple for any field F [6]. In this paper we

offer a converse to Zalesskil's theorem by proving the

Theorem. // F is a field which is not algebraic over a finite field and G is a

polycyclic group, then all primitive ideals of the group ring F[G] are maximal if

and only if G is nilpotent-by-finite.

We warn the prospective reader of ZalesskiTs paper [6] that the word

"primitive" has been translated as prime throughout.

Lemma 1. IfG is polycyclic and H is a subgroup of fini te index with all primitive

ideals of F[H] maximal, then all primitive ideals of F[G] are also maximal.

Proof. The proof of Theorem 3 in [6] applies.

Lemma 2. Let G be polycyclic and H a subgroup of finite index in G. If F[H]

has a nonmaximal primitive ideal, then F[G] does also.

Proof. By Lemma 1, we may assume H is normal in G. Let P be a primitive

ideal of F[H] properly contained in a maximal ideal Q. Let 1 = gx, g2, ..., gn

be a set of coset representatives for H in G. Let P = C]"=\g,ri Pg¡ and Q

= Pl-L ig~' Qg¡. P £ Q since equality would imply that P 2 g¡Qg~' for
some i and hence P would be maximal. Let V be an irreducible F[H] module

with annihilator P. V = V ®F\H\ F[G] has finite length as an F[H] module

and hence as an F[G] module. Let 0 = W0 G Wx Q ■ •_•_ Ç W„ = Fbe a F[G]

composition series for V. The annihilator of V is PG. QG is a two-sided ideal
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and hence can be embedded in a maximal ideal M. Let P¡ = Ann ÍWjW¡_x).

Since P„Pn_x ■■• Px annihilates V, P„Pn_x ■ ■ ■ Px G PG G Q~G £ M. Hence M

contains P¡ for some /'. Now W¡/W¡_x contains a copy of Vgj for some j and

hence contains a copy of Kg for each / Hence P¡ l~l F[H]

= Ann ̂ WjW^ = nf=1 Ann (Kg,) = P. Since M n F[H] 2 0G
n F[H] = Q, we have P¡ C¿ M and P¡ is a nonmaximal primitive ideal.

Proof of Theorem. If G is nilpotent-by-finite, the result follows from

Zalesskiï [6] and Lemma 1. Conversely suppose G is not nilpotent-by-finite.

Pick a subgroup K maximal among the subgroups with N = ^JiGiK) of finite

index and N/K not nilpotent-by-finite. Using Lemma 2, we may assume K is

normal. Also since F[G/K] is a homomorphic image of F[G] we assume

K = X. The finite conjugate subgroup of G is trivial. Otherwise G has a

nontrivial normal subgroup H whose centralizer C has finite index. C/C n H

a CH/H is nilpotent-by-finite by the maximality of tf. Also C H H is central

in C and hence C and therefore G is nilpotent-by-finite, a contradiction. Let

A he a maximal abelian normal subgroup. G contains a subgroup Gx of finite

index such that A contains a normal subgroup B of Gx with the property that

Gx and all of its subgroups of finite index act rationally irreducibly on B [5,

Lemma 2]. By Lemma 2, we assume G = Gx. A is torsion free since G has

trivial finite conjugate subgroup. The rank of B is at least two for the same

reason. We may clearly replace B with QB n A. QA is a Q[G/A] module and

QB is an irreducible submodule. We claim that QA is an essential extension

of QB. Suppose to the contrary that Tis a non trivial (2[C/4] submodule with

T n QB = 0. T n A is a nontrivial normal subgroup of G and CT/(T n A) is

nilpotent-by-finite. This is impossible since G/T n /I contains an isomorphic

copy of B and the rank of B is at least two. Again using Lemma 2, we may

assume G/B is nilpotent. Let U/QB he an irreducible Q[G/A] submodule of

QA/QB. U fl A/B must intersect the center of G/B nontrivially. Therefore,

U/QB must have Q dimension 1. Clearly Ann (Í/) £ Ann ÍQB). If Px
= Ann U/QB and P2 = Ann QB, then P, # P2 since Q[G/A]/PX
a (2 and ö[G/4]/P2 has dimension greater than 1. If Ann U = Ann Q B,

then P2 £ Pi, but this is impossible since each has cofinite dimension and

hence are maximal. Therefore, Ann(t/) Ü Ann (QB). By [4], there is an

x ¥= 0 in the center of Q[G/A]/Ann (U) with x in Ann (g5)/Ann (i/). x

induces an isomorphism of U/QB onto QB. But this is impossible. Therefore,

we have QA = QB and hence A = B. We now show C(ß) = P. If not, take

x in C(fi) - B with x5 in ZÍG/B) D C(ß)/ß. Then L> = <x, fi> is an abelian

normal subgroup contradicting the maximality of A = B. Since F is not

algebraic over a finite field, there exists a monomorphism of 5 into the

multiplicative group of F. This defines an F[B] module structure on F. We

denote this module by V. Let P = Ann^i V. V = V ®F\B\ F[G] is an

irreducible F[G] module. This follows since if g, and g2 are in different cosets

of B, then Vgx and Kg2 are not isomorphic as F[B] modules since C[B] — B.

This implies g, Pgx~x =£ g2 Pg~l. Annihilator of V is ( (~)gmGgPg~x )G. But this

is zero by Bergman's theorem [1]. Hence Ann (K) is a nonmaximal primitive

ideal.

The proof can be simplified considerably if F is a large field. More

specifically, if the transcendence degree F is larger than the rank of G, a
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theorem of Passman may be applied to produce lots of primitive ideals easily

[3].
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