DEDEKIND SUMS AND NONCONGRUENCE SUBGROUPS OF THE HECKE GROUPS $G(\sqrt{2})$ AND $G(\sqrt{3})$

L. ALAYNE PARSON

ABSTRACT. An example is given of a character χ , on a subgroup of $G(\sqrt{2})$ or $G(\sqrt{3})$ such that the kernel of χ , is of finite index in $G(\sqrt{2})$ or $G(\sqrt{3})$ but is not a congruence subgroup.

In [7] K. Wohlfahrt exhibited a class of subgroups of the modular group which were not congruence subgroups although they were of finite index. These subgroups were the kernels of certain characters on $\Gamma_0(n)$. In this note we generalize K. Wohlfahrt's construction to the Hecke groups $G(\sqrt{2})$ and $G(\sqrt{3})$ in order to produce noncongruence subgroups of finite index in addition to those in [5] and to give examples of characters which are not congruence characters. Since $G(\sqrt{2})$ and $G(\sqrt{3})$ are the only Hecke groups commensurable with the modular group [3], K. Wohlfahrt's method cannot be extended to other Hecke groups.

For notational convenience let m stand for 2 or 3. Then $G(\sqrt{m})$ is the group of 2×2 matrices generated by

$$S = \begin{pmatrix} 1 \sqrt{m} \\ 0 & 1 \end{pmatrix} \text{ and } T = \begin{pmatrix} 0 - 1 \\ 1 & 0 \end{pmatrix}.$$

It is well known [1], [8] that $G(\sqrt{m})$ consists of the entirety of all matrices of the following two types:

$$\begin{pmatrix} a & b\sqrt{m} \\ c\sqrt{m} & d \end{pmatrix}$$
, $a, b, c, d \in \mathbb{Z}$, $ad - mbc = 1$,

and

$$\begin{pmatrix} a\sqrt{m} & b \\ c & d\sqrt{m} \end{pmatrix}$$
, $a, b, c, d \in \mathbb{Z}$, $mad - bc = 1$.

For n a positive integer, the principal congruence subgroup of level n is defined by

$$\Gamma(n) = \{ M \in G(\sqrt{m}) : M \equiv \pm I \pmod{n} \}$$

Received by the editors July 22, 1975.

AMS (MOS) subject classifications (1970). Primary 20H05.

where the congruence is elementwise and takes place in $Z[\sqrt{m}]$. A subgroup Γ of $G(\sqrt{m})$ is called a congruence subgroup of level n if $\Gamma(n) \subset \Gamma$ and n is minimal with respect to this property. We are particularly interested in the congruence subgroup $\Gamma_0(n)$ of level n defined by

$$\Gamma_0(n) = \left\{ \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \in G(\sqrt{m}) : \gamma \equiv 0 \pmod{n} \right\}$$

where the congruence again takes place in $Z[\sqrt{m}]$.

If Γ is a subgroup of finite index with $-I \in \Gamma$, a mapping v from Γ into the complex numbers of absolute value one satisfying $v(-I) = \exp(-\pi i r)$ and the "consistency condition" (1) is called a multiplier system for Γ of degree -r, r a real number.

(1)
$$v(M_1 M_2)(\gamma_3 z + \delta_3)^r = v(M_1)v(M_2)(\gamma_1 M_2 z + \delta_1)^r(\gamma_2 z + \delta_2)^r$$

for z in the upper half plane, $M_1 = \binom{*}{\gamma_1} \binom{*}{\delta_1}$, $M_2 = \binom{*}{\gamma_2} \binom{*}{\delta_2}$ in Γ and $M_1 M_2 = \binom{*}{\gamma_3} \binom{*}{\delta_3}$. Here $M_2 z = (a_2 z + b_2)/(c_2 z + d_2)$. To fix the branch of $(cz + d)^r$ for r nonintegral, for any complex number τ and real s we set $\tau^s = |\tau|^s$ $\cdot \exp(\text{is arg }\tau)$ with $-\pi \leq \arg \tau < \pi$. When r is an integer, (1) reduces to $v(M_1 M_2) = v(M_1)v(M_2)$; and v is a character on Γ . In [6] J. R. Smart has shown that if v is a multiplier system for the full group $G(\sqrt{m})$ of degree -r, then

(2)
$$v(M) = v_{s,t}(M)v(M,\sqrt{m},-r), M \in G(\sqrt{m})$$

where $v_{s,t}$ is one of the 4m characters on $G(\sqrt{m})$ determined by M. I. Knopp in [2] and $v(M, \sqrt{m}, -r)$ is the multiplier system for $\eta(z, \sqrt{m})^r$. An explicit expression involving Dedekind sums is given for $v(M, \sqrt{m}, -r)$ in [6].

expression involving Dedekind sums is given for $v(M, \sqrt{m}, -r)$ in [6]. Now set $R = \binom{n}{0}$. It is easily verified that $R\Gamma_0(n)R^{-1} \subset G(\sqrt{m})$. For v a multiplier system of degree -r on $G(\sqrt{m})$, we define v_R on $\Gamma_0(n)$ by $v_R(M) = v(RMR^{-1})$. It is then easy to check that v_R is a multiplier system of degree -r on $\Gamma_0(n)$. Now set $\chi_r = v_R v^{-1}$. χ_r is a multiplier system of degree 0 and hence a character on $\Gamma_0(n)$. From (2) we have the following expression for χ_r . If $M = \binom{a}{c\sqrt{m}} \frac{b\sqrt{m}}{d}$,

(3)
$$\chi_r(M) = \begin{cases} \exp[\pi i t b d(n-1)/m + \pi i r(m+1)(n-1)b/12d] & \text{if } c = 0, \\ \exp[\pi i t (n-1)(bd + ac/n)/m] & \\ \cdot \exp\left[\frac{\pi i r}{12}(n-1)(m+1)(a+d)/mc + 12(\text{sign } c)(s(a,c) + s(a,mc) - s(a,c/n) - s(a,mc/n))\right] & \text{if } c \neq 0. \end{cases}$$

If
$$M = \begin{pmatrix} a\sqrt{m} & b \\ c & d\sqrt{m} \end{pmatrix}$$
,

$$\chi_r(M) = \exp[\pi i t (1 - n)(bd + ac/n)/m]$$

$$\cdot \exp\left[\frac{\pi i r}{12} \{(n - 1)(m + 1)(a + d)/c + 12(\text{sign } c)(s(ma, c) + s(a, c) - s(ma, c/n) - s(a, c/n))\}\right].$$

Here t is an integer, $0 \le t \le m-1$, and s(h,k) is Dedekind's sum. We note that if r is rational, then $\chi_r(M)$ is always a root of unit. In this case, the kernel of χ_r is a finite index in $\Gamma_0(n)$ and therefore in $G(\sqrt{m})$.

THEOREM. If n > 1 and if r is rational, r = h/k, (h, k) = 1, with k chosen so that $6n^2(n-1) \not\equiv 0 \pmod{k}$, then χ_r is not a congruence character on $\Gamma_0(n)$, that is, the kernel K_r of χ_r is not a congruence subgroup.

PROOF. By way of contradiction, we assume that χ_r is a congruence character. In [4] it is shown that any congruence character on a congruence subgroup of level n is identically one on $\Gamma(48n^2)$ when m=2 and $\Gamma(36n^2)$ when m=3. In particular, we must have $\chi_r(M)=1$ when $M=\begin{pmatrix} 1 & 48n^2 \sqrt{2} \\ 0 & 1 \end{pmatrix}$ or $M=\begin{pmatrix} 1 & 36n^2 \sqrt{3} \\ 0 & 1 \end{pmatrix}$. From (3) we have that

$$\chi_r(M) = \exp[12\pi i h(n-1)n^2/k].$$

However, by the choice of k, $\chi_r(M) \neq 1$; and we have the necessary contradiction.

REMARKS. For fixed n, there exist infinitely many primes p such that r = 8/p for m = 2 and r = 6/p for m = 3 satisfy the conditions of the Theorem. For these values of r, if we take t = 0, then the K_r are distinct since the smallest power of S in K_r with strictly positive exponent is S^p . This gives infinitely many subgroups of finite index which are not congruence subgroups.

REFERENCES

- 1. J. I. Hutchinson, On a class of automorphic functions, Trans. Amer. Math. Soc. 3 (1902), 1-11.
- 2. M. I. Knopp, Determination of certain roots of unity in the theory of automorphic forms of dimension zero, Duke Math. J. 27 (1960), 497-506. MR 22 #5614.
- 3. A. Leutbecher, Über die Heckeschen Gruppen $\mathcal{G}(\lambda)$, Abh. Math. Sem. Univ. Hamburg 31 (1967), 199-205. MR 37 #4018; erratum, 38, p. 1377.
- 4. L. A. Parson, Generalized Kloosterman sums and the Fourier coefficients of cusp forms, Trans. Amer. Math. Soc. 217 (1976), 329-350.
- 5. —, Non-congruence subgroups for the Hecke groups $G(\sqrt{2})$ and $G(\sqrt{3})$, Illinois J. Math. 19 (1975), 79–86.
- **6.** J. R. Smart, Parametrization of automorphic forms for the Hecke groups $G(\sqrt{2})$ and $G(\sqrt{3})$, Duke Math. J. 31 (1964), 395–404. MR 29 #2390.
- 7. K. Wohlfahrt, Über Dedekindsche Summen und Untergruppen der Modulgruppe, Abh. Math. Sem. Univ. Hamburg 23 (1959), 5-10. MR 21 #1350.
- **8.** J. Young, On the group of sign $(0,3;2,4,\infty)$ and the functions belonging to it, Trans. Amer. Math. Soc. 5 (1904), 81–104.