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THE LEVI FORM AND LOCAL COMPLEX FOLIATIONS

MICHAEL FREEMAN1

Abstract. A short coordinate-free proof is given for some known results on

the existence of local complex-analytic foliations of a real submanifold M of

C". The proof uses an explicit formulation of the equivalence between two

definitions of the E. E. Levi form of M.

A local definition will suffice for the submanifold; M = {z G U: p(z)

= 0}, where p = (p,, . . . , pm): U —> Rm is part of a smooth real coordinate

patch for U open in C. G is the ring of smooth complex-valued functions on

U and TC the Q -module of smooth vector fields on U. Geometric objects on

M are regarded as residue classes X' = X + O(M) of objects X on U, where

O (M) is the subspace of objects vanishing on M. Thus the ring Q' of smooth

functions on M is Q' = Q/0(M) and the 6'-module of smooth vector

fields on M is T' = T/0(M), where T= {X G TC: XPj = dPj(X) G
O (M), all j}. The submodule of complex tangent vector fields is H' =

H/0(M), where H = {X G TC: dPj{X) and dPj{X) G O(M), ally).
The E. E. Levi form of M is a bilinear map of H' X H' which can be

conceived in (at least) two ways:

(1) as Lp://'X #'->£'» defined by

Lp(X', Y') = ddp(X, Y)' = (39p, (X, Y)', ..., ddpm(X, Y)'),

or

(2) as L: H' X H' -* r///' defined by L(A", }") = [A", Y'] + H', where

[A", Y'\ = [X, Y]' for A", f G r [5].

That (1) and (2) are essentially equivalent has been known for some time.

Recently, an explicit coordinate-free expression of their relationship was

suggested in [1, proof of Proposition 3.2.1]. Due to its usefulness, this

fundamental fact deserves more emphasis:

(3) The differential dp induces a Q'-monomorphism a: T'/H' —» &"" such

that Lp(X', Y') = aL(X', Y'), X', Y' G H'.
This is proved by applying the standard identity dcc(X, Y) = Xio( Y) -

Yu(X) - u([X, Y]) to u = dp and X, Y G H. It is easy to see that the first

two terms on the right vanish on M and conclude that

(4) 3op(AT,_y)' = - Sp&X, Y])', X,Y G H
(recall that ddpj = ddp/). Relation (4) says that the top triangle of the diagram

below commutes.
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H xH

H' xH'

The vertical maps are natural projections and ß(X') = — dp(X)'. Since the

right and left triangles and the outer square commute, a simple chase of this

diagram shows

(5) Lp(X', Y') = ß([X', Y'}), X', Y' G H'. _
Now ker(ß\T') = H' because dp = dp + dp. Therefore there exists a

unique monomorphism a: T'/H' -> &"" such that a ° -n = ß, where it:

T' -> T'/H' is the quotient map. This and (5) show that a satisfies (3).

Relation (3) permits an easy proof of the existence of local complex

foliations of M. Consider the null space A' = {A" G H': Lp(X', Y') = 0

VT £ //'}, which is equivalent to the Levi null space defined pointwise in

[2, Definition 2.7] under the constant rank assumptions made there. It

requires a lot of calculation in [2] to prove (under these assumptions), a result

[2, Theorem 6.1C] equivalent to the integrability condition [A', A'] c A',

yielding a foliation by complex submanifolds tangent to A'. This integrability

condition can be obtained directly by using (3) to rewrite A' as A' = {X' G

H': [A", Y'] G H' for every Y' G H'} and then simply inspecting the Jacobi

identity [[A", Y'], Z'\ + [[Z', X'], Y'] + [[Y', Z'\ X'] = 0. It is clear that the
Levi flat case A = H is described by the equivalent conditions Lp = 0 and

[//', //'] c H', due to Sommer [4] when M is a hypersurface. His proof and a

later one in [3] require considerable calculation in coordinates.
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