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COUNTABLE SPACES HAVING EXACTLY ONE
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FRANK siwiec

Abstract. Some countable, 7f-, ^-spaces having exactly one nonisolated

point are characterised by means of intrinsic properties and mapping

conditions.

1. Four easy examples.

Example A. Let X = {0,1, Vi, %,...} with the usual relative topology. This

is the unique example (up to homeomorphism) of a countable, compact, Tx-

space with exactly one nonisolated point.

Example B. Let X = {0,1, {/i,2, V3,3, v4,4,...} with the usual relative

topology. This is the unique example of a countable, locally compact,

noncompact, ^-space with exactly one nonisolated point.

Example C. Let X be the subspace {(0,0)} U {(l/m, l/n)\m,n G A} of the

plane, where A is the set of natural numbers. Equivalently, X is {0}

U {l/m + l/n\m,n G A and n > m) as a subspace of the line. Equivalently,

X is the space of rational numbers with the topology enlarged by having each

nonzero point also an open set. (Still another description may be found in [1].)

This space X is completely metrizable and not locally compact. It is an easy

exercise to show that this is the unique example of a countable, first countable,

7f-space having exactly one nonisolated point, which is not locally compact.

The above Example C is also not hemicompact. (A space X is said to be

hemicompact if X has a countable cover G of compact subspaces such that if K

is a compact subset of X then there exists a C G G for which K C C. Every

Lindelöf locally compact space is hemicompact.) A closely related concept is

that of a A^-space. (A space A' is a ku-space if X has a countable cover G of

compact subspaces such that a set A c X is closed whenever A n C is closed

in C for every C G G.) Since a Hausdorff space is a A:u-space if and only if it

is a hemicompact /c-space, Example C is also not a ku-space. Our first three

examples were metrizable; the following is not.

Example D. Consider the discrete union of countably many copies of

Example A, and let X be the space obtained by identifying the nonisolated

points to one point. This example, commonly called the sequential fan, is the

unique example of a countable, hemicompact, 7f-, /c-space having exactly one
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nonisolated point, which is not locally compact, as may be seen from Theorem

1.2.
Professor Rajagopalan has asked that it be pointed out that Professor V.

Kannan should be given credit for showing [2] that Examples A, C, and D are

nonhomeomorphic.

Proposition 1.1. Let X be a countable, regular, Tx, Fréchet space. Then the

following are equivalent.

(a) A is a hemicompact space.

(b) X is a ku-space.

(c) X has a hereditarily closure-preserving cover of compact sets.

(d) X is a closed image of a locally compact, countable metric space.

(e) A is a closed image of a locally compact metric space.

(f) X is a quotient image of a hemicompact k-space.

Proof. Some of the conditions are equivalent under more general hypothe-

ses. Let (a^.) be the condition that A is a hemicompact /c-space. That

conditions (ak) and (b) are equivalent was mentioned above, and it is clear

that (a^.) implies (f). Morita [3] has shown that the property of a space being

a Au-space is preserved to the image by quotient maps. (All maps are

continuous, onto functions.) Thus, (f) implies (b). As a result, conditions (a^),

(b), and (f) are equivalent for any (Hausdorff) space.

Let (am) be condition (a) together with the condition that every compact

subspace of X is metrizable. Define (cm) likewise. It is immediate from the

proof of Theorem 7 of Telgarsky [7] that conditions (cm) and (e) are equivalent

for any (Hausdorff) space.

If A is a countable space, then condition (e) implies condition (f). For the

proof, let/be a closed map of a locally compact metric space M onto X, and

for each point x in X, choose a point/?x in/_1(x). Let M' be the closure of the

set [px\x E A"} in M, and let /' = f\M'. Then /' is a closed map of the

locally compact, separable, metrizable space A/' onto A. Thus, (e) implies (f).

It is shown in [6] that for a Hausdorff Fréchet space, (am) implies (e). It is

easy to see that for a countable space, (c) implies (d). Of course (d) implies (e).

Under the stated hypotheses of this proposition, conditions (a) through (f)

are now seen to be equivalent.

Theorem 1.2. Let X be a countable, Tx-space having exactly one nonisolated

point. Then X satisfies one of the conditions of Proposition 1.1// and only if X is

one of the Examples A, or B, or D.

Proof. We need only prove that condition (a) of Proposition 1.1 implies

that the space A is one of A, or B, or D. If A is compact, then A is Example

A. Now suppose that X is not compact, but A" is a hemicompact fc-space. Then

A is the union of an increasing sequence {A",} of compact sets such that if K is

compact then there is an i for which K c K¡. Let x0 denote the nonisolated

point of A. We may assume that each K¡ contains x0. There are infinitely many

distinct K¡, for otherwise A is compact. Let K\ = Kx, and K'¡ = (K¡ - K¡_x)

U {x0} for i = 2, 3, .... Let A, = U{£î|ATÎ is infinite}, and A2 = U{K'i\K'¡
is finite}. Then A2 is either empty or a discrete subspace of A. For suppose that
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X2 is not empty and contains an infinite compact set K. Then K meets

infinitely many K'¡. But since Kis compact, there is aj for which K C K¡, and

soi C U {K'i\i < j}• Since this is impossible, every compact subspace of X2

is finite. But a nonempty, Tx-, A>space in which every compact set is finite is a

discrete space. Thus X2 is either empty of discrete. Since each K'¡ forming Xx

is a convergent sequence, Xx must be either Example A or Example D. Thus

X is Example A, B, or D.

2. Two more examples.

Example E. Let X be the discrete union of Examples C and D with the

nonisolated points identified to one point. This example is a nonmetrizable,

nonhemicompact space, which is a closed image of a countable metric space.

Example F. Let X be the discrete union of countably many copies of

Example C with the nonisolated points identified to one point. Equivalently,

X is the space of rational numbers with the integers identified to one point and

with the topology enlarged by having each nonzero point also an open set.

This example is also a nonmetrizable, nonhemicompact space, which is a

closed image of a countable metric space.

Proposition 2.1. Examples E and F are distinct. In fact, a quotient image of

Example E cannot contain a subspace homeomorphic to Example F.

Proof. Let X = {Xx + X2)/x0 be Example E, where Xx is Example C (with

its metric denoted by d), X2 is Example D, the plus sign denotes the discrete

union, and x0 denotes the nonisolated point of Xx and of X2. Let/be a quotient

map of X onto a space Y. Suppose that Y is not discrete, and let y0 denote the

nonisolated point of Y. Now suppose that Y contains a sequence {Yn) of

subspaces such that each Yn is homeomorphic to Example C and Ym n Yn

= {y0} for m ¥= n. Notice that for each n, [f~l{Yn)] n Xx is homeomorphic

to Example C. So for each n, there exists a point xn in [/_1(y„)] D Xx for

which d{xn,x0) < l/n in Xx. Then xn —* x0 in Xx. As a result f{x„) —* y0 in Y.

But/(jt„) G Yn for all n. Thus U„ Y„ cannot be homeomorphic to Example F.

3. A new concept. Before stating our main result, we briefly discuss a new

topological concept. Assume all spaces are regular and Tx in this paragraph.

We then define a space X to be oMK provided that X has a countable cover

G of closed metrizable subspaces such that if A" is a compact subset of X, there

is a C G G for which K C C. This property of a space is hereditary, is

preserved to the image by perfect maps, is preserved by finite closed unions,

and is preserved by finite products, but not preserved by countable products

[4]. A hemicompact space, in which every compact subspace is metrizable, is

oMK. A oMK is an N-space in the sense of O'Meara [5], and a first countable

oMK space is metrizable.

I am indebted to Professor V. Kannan for finding an error in the following

theorem as stated in a previous draft of this paper.

Theorem 3.1. Let X be a countable Tx-space having exactly one nonisolated

point. Then the following are equivalent.

(a) X is one of the six Examples A, B, C, D, E or F.

(b) X is o MK and a k-space.
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(c) A has a countable closed cover G of metrizable subspaces such that a set

A C X is closed whenever A (A C is closed in C for every C £ G.

(d) A = M/A, where M is a countable metric space, A is a locally compact

subspace, M — A is a dense subspace, and each point of M — A is an open subset

ofM.
(e) X is a closed image of one of the six Examples A, B, C, D, E or F.

Proof. It is clear that (a) implies (b) and it is not hard to show that

conditions (b) and (c) are equivalent.

(b) implies (a). Suppose that X is not homeomorphic to any of the Examples

A, B, C, D, or E. Let X = U {C„\n E A} as given by the oMK condition. We

may assume that the nonisolated point x0 is in Cx, that Cx is nondiscrete, and

that C„ C C„+1 for all n. Then each C„ is homeomorphic to Example A, B, or

C. If no C„ is homeomorphic to Example C, then X is easily seen to be one of

the Examples A, B, or D, by Theorem 1.2. Thus, we may assume that each C„

is homeomorphic to Example C.

Now, let X\ = Cj. If (C2 — X\) U {x0} is homeomorphic to Example C, let

X'2 = (C2 - A',) U {x0} and let A2 = A",. If (C2 - X\ ) U {x0} is not homeo-

morphic to Example C, let X'2 = C2 U X\ and let Xx be the empty set. In

general, if

Dn = (C„ - Xx - X2-A„_2 - X'„_x) U {x0}

is homeomorphic to Example C, let X'„ be Dn, and let Xn_x = X'„_x. If D„ is

not homeomorphic to Example C, let X'n = (C„ — Um<n_2Am) U {x0} and

let Xn_x be the empty set. There are infinitely many nonempty Xn, for

otherwise A is homeomorphic to Example C or E. It is clear that if m ¥= n,

then Xm n X„ either equals {x0} or is empty. Let {Xn\i £ A} be the collection

of all those Xn which are nonempty and let X' denote Xn. for all i. Then each

X' is homeomorphic to Example C, and A = U,A'.

If S is a sequence in A converging to x0, and x0 E S, then there exists an

index ;0 for which S C Xx U • • ■ U A"0. To see this note that there exists an

index n for which S C Cn. Since C„ C A, U ■ ■ • U X„_x U X'„ and there

exists an j0 > n for which X'n G X¡ , we have that

5 C A, U • • • U X;   C A1 U • ■ • U A'°.1 '0

In order to show that X is homeomorphic to Example F, we need to show

that the neighborhoods of x0 in X are identical to those of Example F. Let G

be an open neighborhood of x0 in the topology of X. Then G n A' is open in

A' (= Example C) for all i. Thus G is open in the topology of Example F.

Conversely, let G be an open neighborhood of x0 in the topology of Example

F. Then G C\ X' is open in A' (= Example C) for all i. Suppose that G is not

open in the topology of X. Then A - G is not closed so x0 is an accumulation

point of X — G. Then there exists a sequence S in (A" - G) U {x0}, with

x0 E S, and with 5" converging to x0. By the above, there exists an index /'0 for

which S'CA'1U---UA'0. Since S converges to x0, and G n X' is open in

X' for all /, 5 meets G in infinitely many points. This is impossible, since

S C (A - G) U {x0}. The proof of (b) implies (a) is complete.
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Clearly (a) implies (d). For the converse, if A is finite, then clearly X is

metrizable. Now assume A is infinite and write A = {pn\n G A). Let G'„ be

open in A such that p„ G G'„ and G'n has compact closure. Let Gn be open in

M such that G'n = G„ n ,4. We may assume that each Gn C Gn+X, that each

G„ is in fact both open and closed, and that U{G„|n G A} = M. Then each

f(Gn) is a closed metrizable subspace of X and X = U{f{Gn)\n G A}. Thus

X is a MAT and we have that (d) implies (b).

It is clear that (a) implies (e). We show that (e) implies (b). Let Z be one of

the stated six examples and let / be a closed map of Z onto X. Let z0 denote

the nonisolated point of Z. We may assume that / is one-to-one on

f~l{X — {x0}). Let F = f~l{x0). Since Z is oMK and Fréchet, by [6], there

exists a metric space M and a map g of M onto Z such that g is closed, g is

one-to-one on g~x{Z — {z0}), and Bdy g~'(z0) is hemicompact in M. Then

g of is a closed map of M onto X. Also g °/ is one-to-one on (g ° f)~

■ (X - {x0}). And

(g°frl(x0)=g-i(F) = g-i(z0) U g-\F-{z0}).

But F - {z0} is open in Z, so that Bdy (g ° f)~ (x0) = Bdyg~'(z0) which is

hemicompact. Again by the main theorem of [6], X is oMK and Fréchet. The

proof is complete.

4. Another example. There are countable, Tx-, ̂ -spaces having exactly one

nonisolated point, which are not aMK. An easy example of such a space may

be obtained by identifying the irrational numbers of the real line to one point

and then enlarging the topology by having each rational point also an open

set. If this space is covered by a countable number of metrizable subspaces,

then one may construct a convergent sequence which is not contained in any

of these metrizable subspaces. Thus the space is not aMK. This example is

then a closed image of a separable metric space, but yet not one of the six

examples discussed above.

5. A remark on /c-spaces and non-/c-spaces. Countable ^-spaces having

exactly one nonisolated point may be divided into three disjoint classes. Those

which are /c-spaces, those which contain no convergent sequence, and those

which are neither of these. It is easy to see that every space of the latter class

has its topology as an intersection of two topologies: a topology of a space of

the first class (the topology generated by the sequentially-open sets) and a

topology of a space of the second class (the topology obtained by taking all

convergent sequences, with their limit deleted, as additional closed sets).
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