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Abstract. The complete atomic orthomodular lattice L is said to have the

hyperoctant property if and only if, for every orthogonal family of atoms

(aa) in L with cardinality > 2, there exists an atom q such that q < V aaa

and q <f. aa for each a. The projection lattice of any separable Hilbert space

has the hyperoctant property. In this paper, we show that an abstract

complete atomic orthomodular lattice possessing the additional properties,

A/-symmetry, irreducibility, countably infinite dimension, and the angle

bisection property, has the hyperoctant property. Additional remarks are

made about the non-M-symmetric case.

1. Introduction. In his paper [4], D. E. Catlin defines, in a complete atomic

orthomodular lattice L, the hyperoctant property (HP) by the condition: for

any orthogonal family of atoms [aa] in L with cardinality > 2, there exists

an atom q such that q < \/aaa and q fails to commute with any of the aa.

This condition is clearly satisfied by the projection lattices of separable real,

complex, and quaternionic Hilbert space. Also, it is worth mentioning that

any complete atomic orthomodular lattice possessing HP also has the prop-

erty that every interval in it is irreducible (cf. [3, Theorem 7] and [4, p. 414],

"a-HP => ABP"). Catlin states as an open question, in essence (see [4, p. 414],

"Does FHP => a-HP?") whether an arbitrary complete atomic orthomodular

lattice (containing a countably infinite orthogonal family of atoms, but no

orthogonal family of atoms of cardinality > x0), in which every interval is

irreducible, possesses HP. In our earlier paper [9], we posed the more

restrictive question whether HP obtains in any infinite dimensional Hilbert

lattice, that is, a lattice which is M-symmetric, in addition to having the other

five properties just listed. (In the language of Maeda [8], L is then a complete

irreducible orthomodular AC-lattice.) This question was asked in connection

with our conjecture, formulated in [9], that the three projection lattices are

completely determined by the six lattice-theoretic properties. In this paper, we

prove that the answer to the question on HP posed in [9] is "yes" under the

further assumption of the angle bisection property (cf. [10], [11]). Since the

only three known lattices having the first six properties also have the angle

bisection property, and since the latter property is purely lattice-theoretic in
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nature, we are perfectly willing to assume it. Our derivation of HP uses

coordinatization and a construction suggested by ideas of Amemiya and

Araki [1]. A similar construction was employed by S. S. Holland, Jr. in his

paper [5] to derive a result related to a possible classification theorem for

Baer *-rings, similar to the one we have conjectured for orthomodular

lattices.

2. The main theorem. Our principal result is this:

2.1. Theorem. An infinite dimensional Hilbert lattice satisfying the angle

bisection property possesses the hyperoctant property.

Assume L is an infinite dimensional Hilbert lattice satisfying the angle

bisection property. By [8, 34.5], there exists, corresponding to L, ((k, *), V,

( , )), k a division ring with involution *, V a left vector space over k, such

that L is orthoisomorphic to the lattice L±((k, *), V, ( ,)) of all A. -closed

subspaces of V, A. being the orthogonality relation induced by the

conjugate-bilinear, Hermitian (with respect to *) form ( , ) on V. Let (a'a)

represent an infinite orthogonal family of atoms in L. Since L is separable,

the family is necessarily countable. For each n = 1, 2, . . . , let en be a vector

in V such that a'n = ken, the one dimensional subspace of V spanned by en.

By the angle bisection property [11, p. 45], we may choose each en so that (en,

en) = 1. Also, by [11, Theorem 3.1(a)], k has characteristic zero and hence

contains the rationals as a subfield (this is also a consequence of the angle

bisection property).

Define two sequences of vectors <a„: n = 1, 2, . . . > and </bm: m = 1,

2, . . . > in V by

«» = 2 (21-V k = 1, . . . , 2n - 1) + (l/3)23"2"e2n

and

bm = (-1/3)», +S(2l_V k = 2,...,2m) + (l/3)22-2me2m+1.

An easy calculation shows that an±bm for all m, n = 1, 2, ... . Note also

that each vector is a finite linear combination of the en and all coefficients are

rational. Now let A = {<?,, b2, . . . }± and B = A1 = {bx, b2, . . . }±J- (which

we note is clearly a subset of {ex, e2, ■ ■ ■ }±J~)- Clearly, A and B are

orthogonal, both are ± -closed subspaces of V, a¡ G A and bj G B for all ;',

j = 1, 2, . . . . Since L is assumed orthomodular, there must, in particular,

exist vectors a G A, b G B such that ex = a — b. Let q = kb, so q is an atom

in L. We will show that q satisfies the requirements of HP, with respect to the

family (a'n: n = I, 2, . . . ) of atoms initially chosen. We make the following

evident observations about the vectors a and b, and the atom q.

2.2. Lemma, (i) a - (a, e,)e, = b — (b, ex)ex

(ii) (a, ej) = (b, ef)for all j > 1.

(iii) For all n = 1,2,...,
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(iv) (a, e,) ^ 0 and ib, ex) * 0.

(v)q< V(a'n:n=\,2,...).

Our goal now is to prove q <p a'n for all n = 1, 2, .... A crucial step in the

proof is the following lemma, which gives information about the possible

values of the coefficients (a, en) and (b, en). Since both (b, ex) and (a, ex) are

nonzero, we may assume without loss of generality, that (b, ex) = — j and (a,

e,) = 1 + e, where e is an arbitrary element of k. We might point out that, in

the actual Hilbert space case, if a and b are the vectors corresponding to the

situation described here, ib, ex) = — A, (a, e,) = 1, and (a, e„) = (b, e„)

= 2'~" for all n > 2, these vectors existing by Fourier expansions. Using the

facts that b±a¡ for all / = 1, 2, . . . and aLbj for ally = 1, 2, . . . , we will

derive an expression in the variable e for each ib, e¡), i > 2, and thus for each

ia, <?<)•

2.3. Lemma. For each n = 2, 3, 4, . . . , (a, e„) = (b, en) = 21-" + 23~"c„e,

where c2 = 0 ancf c„ = }(1 - (-4)""2)/o/- « = 3, 4,_

Proof. First, it is easy to verify directly that (a, e2) = (6, e2) = \, since the

vectors b and a, are orthogonal. Now suppose n is even, n > 2, and write

« = 2fc. Suppose inductively that (a, £•„_,) = ib, en_l) = 22~" + 24~"cn_xe,

where c„_, = |(1 - (-4)"~3). Now, consider

0 = 0-0=ib,ak)-ia,bk_x)

= (*, S (2»-V i - 1, 2,.... 2k - 1) + | (2'-*)«^)

- (ö, - j*i + 2 (2'-^: i = 2, . . . , 2k - 2) + I (*■*»)#*_,)

= (6, e,) + I (a, e,) + (22"2*(6, *„_,) - I (24"2*)(a, fÄ_,))

+ \i2>-™)ib,e2k)

-t + f(l + «) +

+ i(23-")(è,e„)

(:

■ 2-B ^-(24-n))(22-
-»«)

1 - | (22-n)(22-" + |(24"")(1 - (-4)"-3)e)

+ \(?-»)(b,en)

= ie-i(42-«)--¡L(43-«)(l-(-4)"-3)e

+ i(23-)(6,e„).

Thus
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(b, en) = 3-2"-3(i(42-") + e(rH43-)(l - (-4)-3) - *))

= 2'-" + 3-2"-3£(tL(43-")((1 - (-4)"-3) - 5(4"-3)))

= 2'-" + e[i(23-")((l - (-4)"-3) - 5.4"-3))

= 21-" + e(H23-)(l-(-4r-2))

= 21-" + 23-"cez       -t- z     c„e,

as desired. Note that the second last equality follows from the standard

formula for the sum of a geometric series. If n is odd, write n = 2k + 1, and

consider 0 = (a, bk) - (b, ak). The result, in this case, follows much as before.

Note, for example, that (a, e4)(b, e4) = | - § e, (a, e5) = (b, e5) = -fc + -^ e,

etc. From Lemma 2.3, it is clear that there is no value of e in k such that (b,

en) = 0 for all but a single value of n, hence we cannot have that the atom

q = ct'„ for any value of n. To prove q ^ a'n for all n = 1, 2, . . . , it will

therefore suffice to show that q is not orthogonal to a'n, for each n = 1,

2, . . . . Thus, we wish to consider whether a value of e is possible which

would result in (b, en) = 0 for any n at all. Our claim is that no such e can

actually occur. We will show that such an e forces a and b to fail to be

orthogonal to each other-a contradiction since a G A, b G B, and A A.B.

Denote, for each n = 2, 3, 4, . . . , by en the element of k such that (b, en) = 0.

Clearly, en = - $c~l = - f (1 - (-4)""2)"1. Note that each e„ is rational,

and thus selfadjoint and central in k. Now denote, for each n = 3, 4, . . . , by

/„(e) the inner product

(2 ((«. eAer. /= 1, 2, ...,«), 2 ((*, eAe,: i = 1, 2, . . . , „)).

Since the scalars (a, ef) and (b, eA depend on e, so does/„(e), clearly. Also, if e

is selfadjoint and central, so are the (a, eA and (b, eA. In that event, /„(e)

equals

- }(1 + e) + \ + (¿ +e)2+ (| - f e)2+ ■ • •  + (2>- + 23-C„e)2,

a quadratic in e of the form Ane2 + Bne + C„, whçre each An, Bn, C„ is

rational. My claim is that, if for some n > 2, b were orthogonal to en, which

would necessarily mean e = e„, then/„_,(e„) would equal zero. But this would

mean that

0 = (a, b) = (a - 2 ((a, eAe-. i = 1, 2, . . . , n),

b-^((b,eAe,:i= 1, . . . , «)).

By Lemma 2.2(iii), this is a contradiction since ( , ) has no isotropic vectors.

Thus we need now only verify our claim that/„_[(e„) = 0 for n > 3. We do

this by means of the slightly more general

2.4. Lemma. The quadratic equation with rational coefficients /„(e) = 0 has

rational roots en and en+x,for n > 3.

Proof, (i) Let n = 3. Note that
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/3(£)=   -^l  +  £)+i+(^+e)2=E2 + Ie-±

= (£+i)(e-1L) = 0

<=> e = - 4 = e3    or    e = -fe = e4.

(ii) Using induction, suppose that/n(e) has roots en and en+1. Now/n+,(e)

■/„(«) + (6, e„ + ,)2- Since £„+1 is the root of (b, en+x)2 = 0, then e„+1 is a

root of /„+1(e) = 0. We claim that en + 2 is the other root. Denoting fn(e) by

A„e2 + B„e + C„, we note that

c--Í+I (-(in-(ixi)-'
because each C„ is simply the nth partial sum of the geometric series

-(1/3) + (1/2)2 + (1/4)2 + . . . with first term -1/3 and ratio 1/4. Since

the product e„en+1 of the roots of /„(e) = 0 equals C„/An, we must have that

K = C„/enen+x = -(l/75)(43-")((-4)"-2 - l)^)""1 - l).
XTNow

fn+l(e) = /„(£)  +  (b>en+\)
\2

,2
= ^(e-e„)(£-£n+1) + (2-" + 22-"cn+1e)

= An(e - en)(e - en+l) + 42-c„2+I(e - en + x)2

= (e - Vm)[4»(* - 6.) + 42-"c2+1(e - eB+1)].

To complete our proof, we need only show that en + 2 is the root of the linear

(in e) equation An(e - e„) + 42_nc2+1(e - en+x) = 0. Now, by direct com-

putation, e = (Antn + A2~"c2+len + x)/(An + 42"V2+1). Substituting previously

derived formulas, we find that Anen = (1 - (-4)"_1)/(15 • 4"~2) and

42-"c2+1e„ + 1 = ((-4)"-' - l)/(5 • 4"-1) so that

Anen + A2-cn+xe„+x = (l - (-4)""')/ (15 • 4""').

Also 42-"c2+1 = (l/5)(42-"(l - (-4)"-1)2), so that

K + 42-"c2+1 = (l/75)(42-")[3(l - (-4)"-1)2

-4((-4)"-2-l)((-4)"-1-l)].

Thus,

(1 -(-4)"-')(75-4-2)
£     =-_-—-

(15 • 4—)([l - (-4)""l][3(l - (-4)"-') + 4((-4)"-2 - l)])

4[3(l - (-4)"-') + 4((-4)""2 - 1)]

_5_
4[-l - 3(-4)""' + 4(-4)"-2]

_5_  = _5_
4[-l - 3(-4)"-' - (-4)"-']        4(-l - 4(-4)"-')
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= 5 = -5= ((-4)" - 1)4       4(1 - (-4)")   '   £" + 2'

as desired. The proof of Lemma 2.4 is complete. By the remarks preceding

Lemma 2.4, Theorem 2.1 is also proved.

3. Concluding remarks. It is still not known to this writer whether Theorem

2.1 can be proved without the assumption of M-symmetry. The latter prop-

erty certainly is not a necessary condition, in the presence of the other five

properties, for HP. Consider, for instance, the horizontal sum of two copies of

the projection lattice of complex, separable Hilbert space. This lattice

possesses the other five properties of a Hilbert lattice, as well as HP, but is

not M-symmetric (cf. [6, p. 416]). On the other hand, if the condition "every

interval in L is irreducible" is replaced by merely "L is irreducible" (in the

non-A/-symmetric case), then HP need not obtain. Let L be the horizontal

sum of the power set of a countably infinite set with 22. Then L is a complete

atomic irreducible orthomodular lattice. Furthermore L contains a countably

infinite orthogonal family of atoms, but no family of cardinality greater than

N0. But clearly L does not possess HP, nor is every interval in L irreducible.

The author is indebted to the referee for this example. We close by mention-

ing a problem related to the general Hilbert lattice classification problem. Our

attempts to solve this problem led to the discovery of Theorem 2.1. Suppose

that the infinite dimensional Hilbert lattice L satisfying the angle bisection

axiom is coordinatized, as before, by ((k, *), V, ( , )). Suppose that k is

commutative and * is the identity mapping. By [11, Theorem 3.1(a)], k is

formally real and so, by a theorem of Artin and Schreier [2, Satz 7b], admits

an ordering. We ask whether the ordering is necessarily Archimedean. If so,

then by a result of Holland [5, p. 519], we can conclude that k is the real

number field. If we assume that k is commutative, * is the identity mapping,

and the ordering is non-Archimedean, we can prove, relative to the construc-

tion of §2 of this paper, that e is an infinitesimal or is zero. Thus, for instance,

the space of all "square-summable" sequences from k, k a non-Archimedean

ordered field, does not give rise to an orthomodular lattice. Other results,

related to constructions from nonstandard analysis, which tend to suggest

further that the answer to our question is "yes", are contained in my paper

[12].
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