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Abstract. In this article the finite intersection property on annihilator right

ideals will be shown to be an adequate substitute for more stringent chain

conditions on such ideals. One application of the investigation will produce

a new characterization of orders in semisimple artinian rings, another will

generate new classes of absolutely torsion-free rings.

Until otherwise indicated all rings are arbitrary associative rings not

necessarily possessing an identity element. To simplify the statements of the

results, we expand the usual definition of a prime ideal to include the ring

itself. For any subset A of a ring R we set /-(/I) = (0: A) = {r G R\Ar = 0},

the right annihilator of A; (0: x) being written for (0: {x}). More generally,

for A and B subsets of R, (5: A) will denote {r G R\Ar C B). We let ¡iA)

denote the left annihilator of A.

A ring R is said to have the finite intersection property on right annihilators

provided that whenever riA) = 0 for a right ideal A C R there exists

xv ..., xn G A with n"=i(0: x¡) = 0. It is readily apparent that a ring which

satisfies the descending chain condition on right annihilators possesses this

property; for choosing xx, . . . , xn G A with n"=1(0: x¡) minimal among all

such intersections forces n"=1(0: xt) = 0. The converse is false however. For

instance a commutative subdirectly irreducible (i.e., having a unique minimal

ideal) nil ring which is not nilpotent has the finite intersection property; in

fact it satisfies the stronger requirement that DxSAi0: x) = 0 implies that

(0: x) = 0 for some x G A. But such a ring cannot satisfy the descending

chain condition on annihilators, else by well-known theorem [3, Theorem 1] it

would be nilpotent. For a specific example of such a ring one may take any

subdirectly irreducible homomorphic image of ®0<a<xFxa where F is a field

and multiplication is defined by xaXß = xa + /8 if a + ß < 1 and 0 otherwise

(see Example 3 of [1]). This example also demonstrates that finite intersection

properties on annihilators cannot force the nilpotence of nil rings.

A ring will be called nonsingular if its right singular ideal Z(Ä) is zero,

where Z(/\) = {a G /?|(0: a) is an essential right ideal).

Proposition 1. Assume (1) riP) = Ofor every prime ideal P of R; and

(2) R has the finite intersection property on right annihilators.

Received by the editors December 18, 1974 and, in revised form, March 27, 1975.

AMS (MOS) subject classifications (1970). Primary 16A34; Secondary 16A12, 16A18, 16A46.

Key words and phrases. Finite intersection property on right annihilators, descending chain

condition on right annihilators, right Goldie ring, absolutely torsion-free ring, hereditary kernel

functor.

1 This research was supported in part by NSF Grant GP 34098.
© American Mathematical Society 1976

213



214 J. M. ZELMANOWITZ

Then given any nonzero right ideal I of R there exist xx, . . . , xn G / with

n;=1(o:*,.) = o.

Proof. It suffices to show that r(I) = 0 for all nonzero right ideals /. If this

is not the case, then use the finite intersection property together with Zorn's

lemma to choose a right ideal P maximal with respect to r(P) i= 0. Now

r(P + RP) = r(P), so P = P + RP by the maximality of P, and thus P is an

ideal of R. In fact P is a prime ideal. For if A and B are ideals of R properly

containing P then r(A) = r(B) = 0. Hence r(AB) = 0, and it follows that

P C¿ AB. Thus P is a prime ideal with r(P) =£ 0, a contradiction which

establishes the conclusion.

Corollary. The rings satisfying the hypotheses of Proposition 1 are prime

nonsingular rings.

Proof. For in particular r(I) = 0 for every nonzero right ideal /, whence R

is prime. Also if Z(R) ^ 0 then we have the contradiction that n"=1(0: xA

= 0 for some xx, . . . , xn G Z(R).    \\

We call a ring R prime (semiprime) right Goldie if R is prime (semiprime),

nonsingular, and finite dimensional. As is well known, these properties

characterize right orders in simple (semisimple) artinian rings [2].

Theorem 2. Assume (1) r(P) = 0 for every prime ideal P of R;

(2) R has the finite intersection property on right annihilators;

(3) R has a uniform right ideal.

Then R is prime right Goldie.

Proof. In view of the preceding corollary it remains only to prove that R is

finite dimensional. Let / be a uniform (i.e., 1-dimensional) right ideal of R.

By Proposition 1, there exist xv . . ., xH €■'I with n"=l(0: xA = 0. It follows

that the homomorphism $: R -> Iw defined by <f>(r) = (xxr, . . . , xnr) is an

isomorphism. Hence by [2, Theorem 1.1] R is finite dimensional.    ||

With but slight modification these results can be extended to semiprime

rings. We will therefore not give complete proofs.

Proposition 3. Assume (1) P n r(P) = 0 for every prime ideal P of R;

(2) R has the finite intersection property on right annihilators.

Then given  any  right  ideal I there exist xx, . . . , xn G / with
n

H (0: xA n / = 0.
í=i

In particular, R is a semiprime nonsingular ring.

Proof. If the conclusion fails then one can use Zorn's lemma to choose a

right ideal P maximal with respect to the property that r(F) n P =£ 0 for all

finite subsets F of P. If G is a finite subset of P + RP, then there exists a

finite subset F of P with r(F) Ç r(G), and from this it follows that P = P +

RP, so P is an ideal.
Next, from the finite intersection property one has that r(P) =£ 0.

Furthermore P n r(P) =£ 0. Else P C¿ P + r(P), whence there exists a

finite subset H C P + r(P) such that r(H) n (P + r(P)) = 0. From H one

obtains finite subsets F ç P and G C r(P) with H ç F + G. Now
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H(r(F) n P) C F(r(F) n P) + G(r(F) n P)

= G(r(F) n P)Q r(P)P Ç r(P) n P = 0.

So r(F) n P Ç r(/7) n P = 0, contradicting the choice of P.

If A and ß are ideals properly containing P, it follows that r(A) n A = 0

= r(B) n B. Also rL4ß) n iA n ß) = 0. For if X G r(/lß) n (A n 5),

then Äx Ç r(^) n ^ = 0 whence x G r(B) n £ = 0. Finally P C¿ ^45; for

if P = /Iß then 0 ^ r(P) n P Ç rL4ß) n iA n ß) = 0. So P is a prime
ideal with P n r(P) ^ 0, contradicting (1).

Additionally, we have r(/) n / = 0 for every right ideal /, so R is

semiprime. Also if Z (R) ¥= 0 there exist z,, . . . , zn G Z (R) with

Z (P. ) n D "_ ,(0: z¡) = 0, which is impossible since D "= ,(0: z¡) is an essential

right ideal. II

As in Theorem 2 we get the following immediate consequence.

Theorem 4. Assume (1) P n r(P) = 0/or every prime ideal P of R;

(2) R has the finite intersection property on right annihilators;

(3) R has a faithful finite dimensional right ideal.

Then R is semiprime right Goldie.

Corollary. // R is a prime irespectively, semiprime) ring satisfying the

descending chain condition on right annihilators and possessing a uniform

(respectively, faithful finite dimensional) right ideal, then R is prime (respec-

tively, semiprime) right Goldie.

Right absolutely torsion-free rings (abbreviated as ATF rings) were in-

troduced in [4] as rings with identity elements in which for every kernel

functor (synonym: left exact preradical) o on right ß-modules with o(R)

¥= R, o(R) = 0. See [4] or [5] for the terminology used here. It is straightfor-

ward to see that R is a right ATF ring if and only if given any nonzero right

ideal I of R, R can be embedded in /<") = / © • • • © / for some positive

integer n (equivalently, there exist x,, . . . , xn G / with D"=1(0: x¡) = 0). See

[5] for a proof of this and other characterizations. We remark that all of what

follows is valid for rings without identity elements, provided appropriate

modifications are made. However for the sake of simplicity we henceforth

assume that rings contain identity elements.

In this terminology, Proposition 1 can be restated as follows.

Proposition 5. If R is a prime ring satisfying the finite intersection property

on right annihilators then R is right A TF.

Corollary. A prime ring which satisfies the ascending chain condition on left

annihilators is right ATF.

Proof. The ascending chain condition on left annihilators is equivalent to

the descending chain condition on right annihilators. ||

For convenience, let us call a right ideal / exceptional if R cannot be

embedded in I(n) for any positive integer n. The next result follows directly

from an examination of the proof of Proposition 1.

Proposition 6. R is right A TF if and only if every nonzero prime ideal of R

is not exceptional.
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Proposition 7. // P is a maximal exceptional right ideal of R, then P is a

prime ideal, either r(P) = 0 or P = lr(P), R/P is right ATF, and P = o(R)

where o is the kernel functor associated to the topologizing filter g = {/1 / is a

right ideal containing Pl"=1(0: pA for some /?,, . . . , pn G P).

Proof. This is trivial if R is right ATF, so we may assume that R is not

ATF. As in the proof of Proposition 1, a maximal exceptional right ideal of R

is a prime ideal. If P =£ lr(P). then lr(P) is not exceptional, so there exists a

monomorphism /:£.—> /r(P)(n) for some positive integer n. Since f(r(P))

= f(l)r(P) = 0, it follows that r(P) = 0.
To see that R/P is right ATF, let a right ideal / ¡? P be given. By the

choice of P there exists a finite subset F Q I with r(F) = 0. Certainly

P C (P: F). If P ¥= (P '■ F), then there exists a finite set G C (P : F) with

r(G) = 0. But FG is a finite subset of P, whence r(FG) ^ 0, a contradiction.

Thus P = (P : F) which proves that Ij'P is not exceptional in R/P. So R/P

is right ATF.
For the final statement of this proposition, recall that

o(R)= {a G Ä|(0:a)GS},

from which it is obvious that P Q o(R). Note that since P is exceptional,

0 (2 g. If P ¥= o(R) then there exist xx, . . . , x„ G o(R) with n"=,(0:jc,)

= 0. So 0 6 g, a contradiction which establishes the fact that P = o(R). ||

The author gratefully acknowledges the improvements suggested by the

referee, and the assistance of L. W. Small in providing the example which

appears at the beginning of this article.
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