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WEAKLY ERGODIC HOMEOMORPHISMS

M. SEARS

Abstract. We discuss self-homeomorphisms whose only invariant real-

valued continuous functions are constants. We investigate the structure and

properties of such homeomorphisms and give various examples.

1. Introduction. It is well known that if (A, 2,¡u, F) is a dynamical system

with measure algebra (A, 2, ¡i) and measure-preserving transformation F, then

T is ergodic if and only if the only invariant measurable functions are

constants, i.e. f(Tx) = f(x) for / measurable implies that/is constant a.e. It

is natural to ask if a topological analogue can be formulated. If A is a

topological space and F is a self-homeomorphism of A, then is F ergodic if

and only if f(Tx) = f(x) => / is constant for any continuous real-valued

function / on A? Many simple examples show that this is not the case and to

characterise ergodicity we have to consider the ring of functions continuous

on comeager sets [3]. Nevertheless the above property characterises a type of

"almost" ergodic behaviour and the purpose of this paper is to begin the

investigation of the structure, occurrence and properties of such homeomor-

phisms.

2. Weak ergodicity. Throughout this section (A, F) will be a cascade with

compact, metric phase space A and self-homeomorphism F. C(A) will be the

ring of continuous real-valued functions on A and a function / G C(A ) will

be called invariant if f(Tx) = f(x) for any x G X.

Definition 2.1. F is called weakly ergodic if / G C(A) and / invariant

implies that/is a constant function.

Remark. Every ergodic self-homeomorphism is weakly ergodic since there

is an x G X with dense orbit under T, i.e. for some x the set 0T(x)

= {J-ociT'x} is dense in A. Thus if/is invariant, f\0T(x) is a constant and

so /is constant on A. The converse is false (see Example 1).

We now investigate the orbit structure of these homeomorphisms.

Definition 2.2. A nonempty set A G X is called weakly minimal in A if A

is closed, A intersects no orbit closure of any point outside A and A is minimal

with respect to this property. We call (A, F) weakly minimal if A is itself a

weakly minimal set in X.

Proposition 2.3. (a) Every weakly minimal set is invariant.

(b) Every cascade has a weakly minimal set.
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Proof, (a) is clear. For (b) let & = [A E X; A is closed, A =£ 0, and A

intersects no orbit closure of a point outside A). As A E &, & ¥= 0. Partially

order & by inclusion, let {Aa} be a chain in & and consider A = HAn. A is

closed and nonempty. Let x E X such that 0T(x) D A ¥^ 0. Then 0T(x)

fi Aa 7e 0 for each a and so x E Aa for each a. Thus x E A. Hence A E &.

Zorn's lemma gives the result.

The hierarchy is as follows:

Proposition 2.4. (a) (A, T) ergodic implies (A, T) is weakly minimal.

(b) (A, T) weakly minimal implies (A, 7) is weakly ergodic.

Proof, (a) If (A, T) is ergodic, it has a point x with a dense orbit. Thus

every weakly minimal set must contain 0T(x). Thus A itself is weakly minimal.

(b) Now suppose (A, T) is weakly minimal and let/ G C(A) and invariant.

Choose x E X and consider/_1(/(jc)). This set is closed and invariant since

/is invariant so (/_1 (/(•*)), T) forms a cascade which has a weakly minimal

set A by Proposition 2.3. Now let z E X - A such that 0T(z) D A # 0.

Since A is weakly minimal in /'(/(•*)), f(z) # f(x). Let T"'z -» a where

a € ¿. Then/(7""z) ->/(a) and so/(z) = /(T"'z) = f(a) = /(x) which is a

contradiction. Thus /l is weakly minimal in A and so A = A. Thus/-1 (/(x))

= A and so / is a constant function.

Remark. Obviously a minimal cascade is weakly minimal, but a minimal set

will not, in general, be weakly minimal.

Example 1. To clarify the various concepts we examine the position when

A = [0,1]. First, there are no ergodic self-homeomorphisms. The weakly

minimal self-homeomorphisms are those which have only a finite number of

periodic points. For suppose T has a finite number of fixed points xx < x2

< • • • < xn. Note that if (A, T ) is weakly minimal so is (A, 7), so we can

assume T is increasing. Suppose A is a proper weakly minimal set in [0, 1].

Clearly QA contains one of the fixed points, x; say. But then x¡ E A and any

point in QA n [x(_,,X;] has x¡ in its orbit closure.

Conversely, if T has an infinite number of fixed points, we can find a

sequence of fixed points increasing (say) to a fixed point x. Now [x, 1] (which

may be (1}) contains a weakly minimal set as any y < x falls into some

interval [xr xr + x] and so 0T(y) E [xr,xr+x] and does not intersect [x, 1]. The

last argument shows that a map with fixed points [l/n; n integer} U {0} will

be weakly ergodic but not weakly minimal while Urysohn's theorem shows

that a map whose set of fixed points has interior will not be weakly ergodic.

This is not a necessary condition however; a homeomorphism which has the

Cantor 1/3 set as its set of fixed points will not be weakly ergodic since there

is a continuous real-valued function which is constant on each interval left out

of [0,1] to give the Cantor set.

Definition 2.5. Given x E X we call a closed set A E X a weakly minimal

set for x if x G A, A intersects no orbit closure of a point outside A and A is

minimal with respect to this property.

Lemma 2.6. There is a unique weakly minimal set for each x E X which we

denote by Ax.
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Proof. The existence follows as for 2.3(b). If A and F are both weakly

minimal sets for x, then so is A D B and thus A = A (1 B = F.

Clearly we also have

Proposition 2.7. (A, T) is weakly minimal if and only if Ax = X for each

x G X.

Lemma 2.8. There is a collection & of closed, disjoint invariant sets covering X

such that no refinement of & has this property. Further, this cover is unique. The

element of & containing x is denoted by A*. We call & the weakly ergodic

decomposition.

Proof. Let r = {&; & is a closed, disjoint cover of A consisting of invariant

sets}. Index T by T = {&ß',ß G <$,}. T is nonempty as {A} G T. For each

x G A let

A* = C\{Aa;Aa G âa and x G Aa).

It is easy to check that {Ax;x G A} is the required cover.

Justifying the term weakly ergodic decomposition:

Proposition 2.9. (Ax, T) is weakly ergodic for each x G X.

Proof. Let/be a continuous real-valued invariant function on^x. Consider

{/"'(a); a real}. This is a closed, disjoint, invariant cover and so {/"'(a);

a real} U {Ay; Ay # Ax) is a cover in T. But now Ax G f'x(f(x)) G Ax, so

/ is constant.

Example 2. Ax need not be Ax and it is not necessary that each Ax = A for

weak ergodicity. Let A be the subspace of R2 consisting of [0,1] x [0,1] with

a set of nonoverlapping arcs starting at (1, y) and finishing at (0,2 — y). We

define Fon A by T(x,y) = (x,y2~x) for 0 < a: < 1, 0 < y < 1 and similarly

for the arcs so that the arcs have fixed endpoints and each arc is a weakly

minimal set in A. Clearly for each (x,y) on an arc, A, -, = A^x'y' = arc, and

for each (x,y) in the unit square, A,x \ = A^x'y' = {(x,a); 0 < a < 1}. How-

ever (A, T) is weakly ergodic. We can check this directly by following orbits

or apply the next theorem.

We now characterise weak ergodicity in terms of orbit decompositions. To

simplify notation, if <>D is a disjoint, closed cover, we denote by D the

decomposition space of % i.e. the space whose points are the elements of ty

and a set is open in D if the union of its elements is open in A. Denote by D*

the universal Hausdorff space associated with D, i.e. the Hausdorff space such

that any continuous map / from F to a Hausdorff space can be lifted to a

continuous map in D* [I, p. 140].

Theorem 2.10. Let (X, T) be a cascade and D the decomposition space of the

weakly ergodic decomposition of X. Then (A, T) is weakly ergodic if and only if

D* is one point.

Proof. Let p be the projection map from A onto D and let <j> be the universal

map from D onto D*. Then <j> ° p is a continuous map from A onto D* and

so, as D* is Hausdorff, it is compact and so normal. Suppose D* has more

than one point. Then there is a continuous real-valued function/on D* which
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is not constant. Thus / ° <i> ° p is continuous and not constant on A. By the

construction of aù, p is invariant and so / ° § ° p is invariant. Thus (A, T) is

not weakly ergodic.

Conversely, suppose (A, T) is not weakly ergodic. Let / be a continuous

invariant function which is not constant. We can define a function F on D by

F(AX) = f(x) since, by Proposition 2.9, f\Ax must be constant. Clearly F is

not constant. Finally by the universal property there is a function F* on D*

such that F* ° 4> = F and so F* is not constant. Thus D* has more than one

point.

Example 3. (a) In Example 2, D = {(x,0);0 < x < 1} U {(\,y); 0 < y

< 1} U {(1,1)} with the topology

Ne(x,0) = (x - e,x + e) X {0} U {1} X (1 - e, 1) U (1 - e, 1) X {0},

etc. Since this topology has no disjoint neighbourhoods, D* is one point.

(b) If X is the torus with the product rotation Tx T where T is a rotation

incommensurable with tr of the unit circle, then D is just the unit circle and

D* = D.

Remark. We can also describe D* directly from the function algebra. It is

easy to check that D* is actually the structure space of (/ G C(A);/° T

= /}. This gives us another proof of 2.10.

3. Inheritance properties. Ergodic cascades are not well behaved under

inheritance properties. Factors of ergodic cascades are ergodic, but Example

3(b) above shows that products need not be ergodic (or even weakly ergodic)

and we can easily construct examples in which no power of an ergodic

homeomorphism (except —1) is ergodic. In this section we show that under

certain conditions weakly ergodic and weakly minimal cascades are well

behaved under products and powers. For simplicity a clopen set invariant under

T will be a nonempty open and closed proper subset of the phase space

invariant under the homeomorphism T.

Proposition 3.1. Factors of weakly ergodic cascades are weakly ergodic and

factors of weakly minimal cascades are weakly minimal. Thus weak ergodicity and

weak minimality are isomorphism invariants.

Proof. Follows immediately from the definitions.

Lemma 3.2. Let (X, T) be a weakly ergodic cascade and n a nonzero integer.

Then the space D* for the cascade (A, T") has at most n distinct points.

Proof. Let [Ax;x E X ) be the weakly ergodic decomposition of (A, T) and

{Bx;x G A} be the weakly ergodic decomposition of (A, T"). For each Ax,

there is a By such that .4* = By U TBy U • • • U Tn~x By. For any integer i,

[T'Bx;x E A) is a closed, disjoint cover invariant under T" and so for each

TBX there is a By with By C TBX. But then T"~x By E Bx and so By

= TBX. Thus T induces a periodic homeomorphism on the decomposition

space for (A, T") and so it induces a homeomorphism T* on D* and T* is also

periodic with period at most n.

Now let R E D* X D* be the equivalence relation defined by (x,y) E R if

y = T"x for some integer /'.  If (x,y) E cl (/?),  then for some k every
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neighbourhood of (x,y) contains a point of the form (a, Tka) so y = Tkx and

(x,y) G F. Thus F is closed and D*/R is Hausdorff. If F is the decomposition

space for (A, F) then it is easy to check that the map from F onto D*/R which

takes Ax onto the equivalence class of the set {F-»", TBy,..., T"~x By) in D*/R

is a well-defined continuous surjection. But then by the universal property

there is a map from F* onto D*/R which means that D*/R is one point and

so D* can have at most « points.

Theorem 3.3. Let (A, T) be a weakly ergodic cascade and n be a nonzero

integer. Then (A, T") is weakly ergodic if and only if there is no clopen set

invariant under T". This statement is also true with weakly minimal replacing

weakly ergodic.

Proof. Necessity is obvious in each case. Suppose that (A, T") is not weakly

ergodic. By Lemma 3.2, D* for (A, T") contains between 2 and « points and,

as D* is Hausdorff, each point is open and closed. Thus if p is the projection

to the decomposition space and <p is the universal map, for any x G D*,

p~l<p~x(x) is a clopen set in A invariant under T". Next suppose (A, T") is

not weakly minimal and let x G X such that Ax =£ X. Now T'AX is weakly

minimal in A for any integer /' and so T'AX n TJAx = 0 or T'AX = T^AX.

Consider ,4 = Ax U TAX U ■•• U T"~XAX. A is closed and invariant under

F. If A ¥= X, there is a y G X - A such that 0T(y) DA ¥= 0 as A is weakly

minimal. But then 0T(y) f~l Ax # 0 and so one of 0T„(y), ..., 0Tn(Tn~xy)

has a closure point in Ax which is a contradiction. Thus A = X and so Ax is

open and closed.

Corollary 3.4. Let (A, T) be a weakly ergodic cascade.

(a) If X is connected, then (A, T") is weakly ergodic for any « y= 0.

(b) // T has a fixed point, then (A, T" ) is weakly ergodic for any « ¥= 0.

These statements are also true with weakly minimal replacing weakly ergodic.

Proof, (a) is obvious. For (b), suppose that A is a clopen set invariant under

T" for some « and p is a fixed point of F. Since U"=x T'A and n?=i T'A are

closed and open sets invariant under F, the first set is A so p G A, and the

second is empty sop & A.

We can also obtain a result for products.

Theorem 3.5. Let (A, F) be a weakly minimal cascade, (Y, S) be a weakly

ergodic cascade and suppose that T has a fixed point. Then (X X Y, T X S) is

weakly ergodic.

Proof. Let / be an invariant function in C(A X Y). The function g(y)

= f(p,y), wherep is a fixed point of F, is an invariant function in C(Y) and

so a constant c, say. Let & = {A C X;f(x,y) = c for all x G A and all

y G Y}.{p} G â so â# 0. Partially order & by inclusion and select a

maximal element M. Clearly M is closed and invariant under T so if M ¥= X

there must be an x G X such that 0T(x) n M#0 since A is weakly

minimal. Thus for any y G Y we can find integers n¡ such that (T"'x, T"'y)

-f (a,b) where a G M and b G Y. Thus f(T"'x, T"'y) = f(x,y) = f(a,b)



324 M. SEARS

= c. But now M U (x) G â, which is a contradiction, and so M = A. Thus

/ is a constant function.

Corollary 3.6 . Let (A, T) be weakly minimal and (Y, S) be weakly ergodic,

and let T have a periodic point of period n. Suppose that there is no clopen set

invariant under T" and no clopen set invariant under S". Then (X X Y, TX S) is

weakly ergodic.

Proof. By 3.3, (A, T") is weakly minimal and (Y, S") is weakly ergodic. By

3.5, (A X Y, T" X S") = (A X Y, (T X S)") is weakly ergodic and so (A X Y,

TX S) is weakly ergodic.
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