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THE DIMENSION OF INVERSE LIMITS

M. G. CHARALAMBOUS

Abstract. A result is obtained concerning the dimension of inverse limits

of uniform spaces from which several propositions follow that improve

earlier results by various authors.

1. Introduction. There are two obvious questions concerning inverse limits

that arise in dimension theory: (a) What spaces X are inverse limits of "nice"

spaces with dimension < dimension Xe! (b) If X is the inverse limit of spaces

with dimension < n (under what conditions) it is true that dimension X < n ?

The first question has been dealt with by Mardesic [9], Pasynkov [15] and

Kljusin [8], who generalised the result of Freudenthal asserting that a compact

metrisable space X is the inverse limit of a sequence of polyhedra with

dim < dim X. The second question has received less attention. We have the

obvious result for compact spaces, and two results of Nagami, the first

asserting that the inverse limit of a sequence of metric spaces of dim < n has

dim < n [12], the second that if a countably paracompact space X is the

inverse limit of a sequence of normal spaces with dim < n, then, provided the

bonding maps are open and surjective, X is normal and dim X < n [13].

In this paper we show that if a uniform space (X, %) is the inverse limit of

uniform spaces (Xa,alla) with %a - dim Xa < n, then % - dim X < n, where

% - dim is the dimension function introduced by the author [2]. Some

corollaries of this result are as follows. (1) The inverse limit of a sequence of

perfectly normal spaces with dim < n is perfectly normal with dim < n. (2)

If a strongly paracompact space X is the inverse limit of spaces with dim < n,

then dim X < n. (3) If X is the product of separable metric spaces Xa such

that any finite product of A^'s has dim < n, then X has dimension < n. For

dimension zero, this result has also been obtained by Morita.

2. Definitions. A subset of a uniform space (X, <ÎL) is called %^open (%-

closed) if it is the inverse image of an open (closed) subset of R, the space of

real numbers, under a uniformly continuous function. In hyphenated words

where "<$LZ", the relativisation of % to a subset Z of X, occurs, we drop "Z".

For example, "%z-open" becomes "%-open in Z". A %rCover (cozero cover)

of A' is a cover consisting of Biropen (cozero) sets of X. A dimension function

d is simply a function with domain a class of spaces and range the set
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{-1,0,1,2,..., oo} such that d(X) = -1 if and only if A is empty. To define

d it suffices to define 'W(A) < «" for « = 0, 1, ... so that if d(X) < « and

« < m then d(X ) < m, for we can then let "d(X ) = «" mean "d(X ) < « and

d(X) < « - 1" and "d(X) = oo" mean "d(X) < «, « = 0, 1, ... ".

%rdim is defined on the class of all uniform spaces, and dim, dim* on the

class of all topological spaces as follows.

<?Wlim A < « (dim A < «, dim* A < «) if every finite 9>cover (open, co-

zero cover) of A is refinable by a finite <2irCOver (open, cozero cover) or order

< «. (A collection has order < n if any « + 2 of its elements have empty

intersection.)

As is well known, dim* is the modification of dim introduced by Katëtov

and Smirnov, and dim = dim* for normal spaces. If % is a metrisable

uniformity on A, or the topology induced by 9L on A is Lindelöf, or % is the

uniformity generated by the family of all (bounded) real-valued continuous

functions on a topological space A, then the %ropen sets of A are precisely the

cozero sets, and hence % - dim A = dim* A. Furthermore, in the first two

cases, A is normal and hence % - dim A = dim A [2].

Proofs of the following statements concerning ^open sets of a uniform

space (A, %), which are used implicitly in the sequel, may be found in [2]. The

collection of all %-open (^closed) sets of A is closed with respect to finite

intersections and countable unions (countable intersections and finite unions).

If G is %-open and F is 9lrclosed, then G - F is Biropen and F - G is %-

closed. H is <^open (%-closed) in a subspace F of A if and only if

H = G n y for some %-open (%-closed) set G of X. If F, F are disjoint %-

closed sets of A, there are disjoint %-open sets G, H of A with EGG and

F G H. This will be referred to as the normality property of %K)pen sets. Two

subsets A, B of X are called distant if for some U in %., (A X B) n U = 0.

Proofs of the following results can be found in [3].

Lemma 1. If A, B are distant sets of (X, %), there are distant ^closed sets E,

F and distant ^open sets G, H with A G E C G and B G F G H.

Lemma 2. If A is a ^-closed set of X, there are ^-closed sets Ak, k = 1,2,

..., such that A =  (~]Ak and Ak + X is distant from X — Ak.

3. Dimension of inverse limits.

Lemma 3. Let (A, %) be the inverse limit of an inverse system of uniform spaces

(Xa,alla,faß) with canonical projections fa: X —> Xa, and suppose A, B are distant

in X. Then for some a, fa(A), fa(B) are distant in Xa.

Proof. If ga = f Xfa, by [1, Proposition 10, p. 181], for some a and V in

%,, (AXB)n gf{y) = 0, and hence (fa(A) X/„(F)) n  V = 0.

Lemma 4. Let (A, %), (A, T) be the inverse limits of the inverse systems of

uniform spaces (Xa,^La,faß) and (Xa,"{a,faß), respectively, and suppose that the

sila-open sets of each Xa are precisely its \-open sets. Then the ^open sets of X

are precisely its "{-open sets.

Proof. For a given %-open set G of A, let Gk, k = 1,2,..., be %-open sets

such that G =  U Gk and Gk is distant from A - G (Lemma 2). By Lemma 3,
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for some a = a(k), fa(Gk), fa(X - Gk) are distant in Xa. Hence there are

disjoint <%a-open sets Pk, Qk of Xa with fa(Gk) E Pk and fa(X - G)

E Qk (Lemma 1). By assumption Pk, Qk are ^-open, and since/,: (X,T)

-* (Xa,\) is uniformly continuous Sk = fa~l(Pk), Tk = f~x(Qk) are disjoint

%open sets of X with Gk C Sk and X - G C 7¿. Hence G¿ C 5t C G, C

= 11^ and G is T-open. The converse follows by symmetry.

In the sequel all spaces are invariably assumed to be Tychonoff.

Theorem. Let (X, %) be the inverse limit of an inverse system of uniform spaces

(^a'^a'Jaß) witn ^a " dimA^ < n for each a. Then % - dim A < n.

Proof. Let \ be the precompact uniformity on Xa whose uniform covers

are those that are refinable by the finite %„-covers of Xa. Then the %-open

sets of Xa are precisely its %a-open sets and

8d(Xa,\) = % - dim A; = %a - dim A; < n

[2, Proposition 8], where 8d denotes Smirnov's dimension function; see e.g. [7].

Clearly (Xa,\,faß) is an inverse system of uniform spaces, and if (A'.T) is its

inverse limit, applying the inverse limit theorem for 8d [7, p. 71], we obtain

8d(X,c\r) < n. Finally, since "V- dim X < 8d(X,°V) [2, Proposition 7], by

Lemma 4, <h - dim X = CV- dim X < n.

Reference to the dimension function 8d can be completely avoided by

applying the obvious result for dim on compact space to the inverse limit of

the completions (Ya,\) of (Xa,\) which satisfy dim Ya = % -dim Ya = %a-

dimAa < n [2, Proposition 8], and then appealing to the subset theorem for

%^dim [2, Proposition 3]. Another similar proof can be obtained by using the

interesting fact that % - dim X = 8d(X, /w%), where (X, //r%) is the 'STL-fine

coreflection of (X, 6li); see [21]. A uniform space is called 91t-fine, or metric-

fine, if every uniformly continuous function into a metric uniform space

remains uniformly continuous when the latter is re-equipped with its fine

uniformity. /n% is the coarsest 'DIL-fine uniformity which is finer than %. It can

be shown that the precompact reflection of (X,mGIX) has as a basis the

collection of finite 9i^covers of X, which implies 8d(X, rtfli) = % - dim X and

also that the w%-open sets of X are identical with the ^open sets. The same

comments apply to the (separable metric)-fine coreflection of [20].

According to Smirnov [16], a Tychonoff space X has the monotonicity

property relative to dim* if dim* X < dim Y for every compactification Y of

X. If % is a uniformity on X, T is the precompact uniformity on X whose

uniform covers are those that can be refined by finite %-covers, and (Y,°V) is

the completion of (X, T), then dim Y = % - dim X. It follows that X has the

monotonicity property relative to dim* if and only if dim* X < %' - dim X for

every uniformity % on X. The class of all spaces with the monotonicity

property relative to dim* contains all strongly paracompact spaces.

Proposition 1. Let X be the inverse limit of an inverse system of Tychonoff

spaces Xa with dim*Aa < n for each a, and suppose X has the monotonicity

property relative to dim*. Then dim*A < n.

Proof. Let (A,%) be the inverse limit of (Xa,alia) where <?L   is the Cech
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uniformity on Xa, i.e. the uniformity generated by the family of all bounded

real-valued continuous functions on Xa. Then alla-dimXa = dim*Aa < «,

and by the theorem, dim* A < %-dimA < «.

Proposition 2. Let X be the inverse limit of an inverse system (Xn,fnm,n

G N ) of perfectly normal spaces with dim A„ < k for each « in N, the set of

natural numbers. Then X is perfectly normal and dim A < k.

Proof. Let (A,<3l) be the inverse limit of (Xn,Glin,fnm) where %„ is the Cech

uniformity on Xn. Then %,„ - dim Xn = dim A„ < k. If A is closed in A, and

fn: X -* Xn are the canonical projections, then A = C\J~X(fn(A)) [1, Corol-

lary, p, 49]. Since A„ is perfectly normal, fn(A) is a zero set, and hence a %„-

closed set of Xn. Of course/, is uniformly continuous, and hence f~x (fn(A)) is

%^closed. Thus A is ^closed, and by the normality property of Biropen sets,

A is normal and hence perfectly normal. By our theorem, dim A = %-dim A

< k.
That the inverse limit of a sequence of perfectly normal spaces is perfectly

normal has also been obtained by Cook and Fitzpatrik [4] by a relatively

involved argument.

For the following results we need theorems giving sufficient conditions

under which every real-valued continuous function on a subset Y of the

product A of spaces Xa depends on countably many coordinates, i.e. it is the

composite of some real-valued continuous function on a countable subproduct

Z of Aa's together with the canonical projection Y —> Z. In Gleason's theorem

[7, p. 132], the conditions are that Y is an open set of A and each Xa is

separable. In Engelking's version of this theorem [5, Theorem 1], it is sufficient

to assume that Y = X and that finite products of Aa's are Lindelöf. Noble and

Ulmer [19] observe that for Engelking's proof to work it suffices to assume that

finite products of Aa's have the property that each uncountable subset has an

accumulation point, and this includes the case when finite products of Aa's are

countably compact, which is used in the proof of Proposition 7.

Proposition 3. Let Y be an open subset of the product X of separable spaces

Xa such that any finite product of Xa's has dim < «. Then dim* Y < « in each

of the following two cases.

(1) Any countable product of Xa's is hereditarily Lindelöf.

(2) Any finite product of Xa's is perfectly normal.

Proof. A is the inverse limit of finite products Yß of Aa's. If (A, %) is the

inverse limit of (Yß, %o) where %o denotes the Cech uniformity on Yß, then for

each ß, %-ß - dim Yß = dim Yß < « and by our theorem%- dim A< «. By the

subset theorem for %,-dim [2], %- dim Y < «.

If /: Y -* R is continuous, by Gleason's theorem [7, p. 132] there is a

countable product Z of A0's and a continuous g: tt(Y) —> R such that

/ = 8*/Y, where it: X —» Z is the canonical projection. If Z is the inverse limit

of spaces Yy, let Tbe the inverse limit of the corresponding uniformities <?iY.

Then -n: (A, %) -» (Z, T) is uniformly continuous. Let H be an open set of R.

In case ( 1 ), the cozero set g ~ ' (H ) of the Lindelöf space tr( Y) is T-open in tt( Y),

and hence f~x(H) = tr~xg~l(H) is ^open in Y. In case (2), g~l(H) is an
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open set of Z, and since any open set of Z is T-open (Proposition 2), / (//)

is ^Uopen in Y. It transpires that every cozero set of Y is ^open, and hence

dim* Y = %-dim Y < n.

Using Engelking's [5] version of Gleason's theorem, we obtain

Proposition 4. Let X be the product of spaces Xa every finite product of which

has dim < n. Then dim* A < n in each of the following two cases.

(1) Countable products of Xa's are Linde ¡of.

(2) Finite products of Xa's are perfectly normal and Lindelöf.

In case (1) of Proposition 4 for dimension 0, since the product theorem for

dim holds when the product is Lindelöf [12], we need only assume dim Xa < 0

for each a. In this form the result has also been obtained by Morita [11,

Theorem 3]. The following result follows from Glicksberg's theorem [7, p. 138].

Proposition 5. If a pseudocompact space X is the product of spaces Xa, every

finite product of which has dim* < n, then dim* A < n.

Proposition 6. Let a countably compact space X be the inverse limit of an

inverse system of normal spaces and surjective maps (Xn,fnm) with dim X„ < k

far each n. Then X is normal and dim A < k.

Proof. If E, F are disjoint closed sets of X, fn: X —> Xn the canonical

projections, then C\J„~x(fn(E) n f„(F)) = 0, and since A is countably

compact, f~x(fn(E) n f„(E)) = 0 for some n. Since each/,m is surjective, so

is each/, [7, p. 72] and hence f„(E) D f„(F) = 0. It is now clear that since

each X„ is normal, so is A, and if (A,%) is the limit of (X„,%.„) where %„

denotes the Cech uniformity on A„, then every open Fa-sei of A is %^open. Our

theorem then implies dim A = Gll- dim A < k.

Proposition 7. Let X be the product of spaces Xa such that any countable

product of Xa's is countably compact and any finite product of Xa's is normal with

dim < n. Then dim* A < n.

Proof. This follows from [19, Proposition 2.1], Proposition 6, and our

theorem.

4. Examples. There are various directions in which our results may be

conjectured to generalise, and the following examples rule out some of them.

They also illustrate the usefulness of these results.

1. If A is the product of uncountably many copies of N, the space of natural

numbers with the usual topology, Stone [17] has shown that X is not normal

and hence dim A > 0. Proposition 3 gives that any nonempty open set of A

has dim* = 0. According to Morita, S. P. Franklin proved dim* A = 0 in

1970.

2. If Ru is the set of points of the Hubert space all of whose coordinates are

rational, it is well known that dim Ru = 1 and RaX Ra = Rw [6]. It follows

from Proposition 3 that any nonempty open subset of the product of any

number of copies of Ru has dim* = 1.

3. For each ordinal a < ux, the first uncountable ordinal, let Ia be a subset

of /", n a fixed element of {1,2,..., oo), such that 0 G Ia, dim Ia = 0, for
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a < ß,Ia G Iß, and /" = Ua<Ul/a [12, Theorems 13-15]. Let Ma, M be the

following subspaces of [0,u>x] X I".

Ma=   U {y}x/Y U {(ß,0):ß<w,},

m= y Ma= y {«}x/a.

Define continuous faß: Mß —> Ma, a < /?, and fa: M -* Ma by faß(y,x)

= (y,x) if y < a,/a/3(y,x) = (y,0) if y > a,/a(y,x) = (y,x) if y < a, and

/,(y, x) = (y, 0) if y > a. Then M is the inverse limit of the inverse system

(Ma,faß) with canonical projections^, and fa,faß are both open and surjective.

Yet M is a normal space with dim M = « [12] while each Ma is completely

normal with dim Ma = 0.

4. If A is the inverse limit of an inverse system of normal spaces and open

surjective maps (Xn,fnm) with dim X„ < k for each A, is it true that

dim* A < /c? Nagami's result [13, Theorem 17] asserts that this is so provided

that A is countably paracompact. Let A be Michael's hereditary paracompact

and Lindelöf space with dim = 0 [10], and Y be the irrationals. Then, as

Nagami [13] observes, Y is the inverse limit of countable discrete spaces

Y¡, i = 1,2,..., and hence A X F is the inverse limit of hereditary paracom-

pact and Lindelöf spaces X X Y¡ with dim (A X Y¡) = 0 (and open surjective

bonding maps). Yet A X F is not normal, and hence dim A X F > 0. An

affirmative answer to our question.implies dim* A X F = 0, and this has been

shown to be true [18]. An affirmative answer in fact implies: If A is a normal

space and F is a zero-dimensional separable and completely metrisable space,

then dim* A X Y = dim A.

5. Can we extend Proposition 4 to arbitrary inverse limits of metric

separable spaces? Mrowka is reported to have obtained an example of a closed

subspace A of an infinite product of copies of A with dim* A > 0 [14, §3].

Then A is the inverse limit of (zero-dimensional) countable discrete spaces,

and yet dim* A > 0.
6. If a completely normal first countable space A is the inverse limit of

completely normal first countable spaces A0 with dim Xa < n, is it true that

dim A < « ? Example 3 shows that this is false if we drop the assumption that

X is completely normal. Let A be a subset of a completely normal first

countable space A, and for each x in A - A, let Ax = A - {x}. Then the

normal space Ax is the countable union of closed sets with dim < dim A and

hence dim Ax < dim A. Since A is the inverse limit of the cofinite subsets of

A containing A, if the answer to our question is affirmative, then the subset

theorem for completely normal first countable spaces is valid. The latter is an

open question in dimension theory.
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