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ABSTRACT. Let (X, p) be a metric space with d;(X,p) < dim X where d,
denotes the metric-dependent dimension function introduced by K. Nagami
and J. H. Roberts [2]. Then it will be shown that for any integer k with
dy(X,p) < k < dim X there exists a topologically equivalent metric p, with
dy(X,p;) = k. This extends a result of J. C. Nichols [3] and answers the
problem raised by K. Nagami and J. H. Roberts [2] in the affirmative.

1. Introduction. Let (X, p) be a nonempty metric space. Then the metric-
dependent dimension d, (X, p) is defined to be at most » if for any collection
{(C;,C3):i=1,...,n+ 1} of n + 1 pairs of closed sets with p(C;,C}) > 0,
there exist closed sets B, i = 1, ....,n+ 1, such that (i) B; separates X
between C; and C; for each i, and (ii) N*}B; = &, where p(C;, C;) denotes
the distance between C; and C; w.r.t. the metric p (cf. [2]). In this paper the
following realization theorem for d, will be proved, which answers the

problem posed by [2] in the affirmative.

THEOREM. Let (X, p) be a metric space with dy(X,p) < dim X, and let k be
any integer with dy(X,p) < k < dim X. Then there exists a topologically
equivalent metric py such that d)(X,p,) = k.

A similar assertion was proved by J. C. Nichols [3] in the case where (X, p)
belongs to some special class of spaces which are subsets of finite dimensional
Euclidean cubes with the usual metrics.

Throughout the paper, (X, p) denotes a metric space with a metric p which
is compatible with the topology of X.

2. Some lemmas. Let (C, C') be a pair of closed sets of (X, p) with
p(C,C’") > 0; then there exists a uniformly continuous mapping f of (X, p)
into the closed unit interval I such that f(C) = 0 and f(C’) = 1. More
generally we shall prove

LEMMA 1. Let (C, C’) be a pair of disjoint closed sets and {W;: i = 1,2,...}a
decreasing sequence of open sets in (X, p) such that

(i) p(W,41, X \W)) > 0 for all i,

(i) N2y W = 2,

(iii) p(C\W;, C"\W;) > O for all i.
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Then there exists a continuous mapping f: X — I such that f(C) = 0, f(C’) = 1
and f|(X \W,) is uniformly continuous w.r.t. p for each i.

PrROOF. By assumption (i) we can choose open sets U;and V, i = 1, 2,.. .,
such that

(1) W C U CWC Wy W=X

with o(W;, X \U;) > 0, p(U;, X \F;) > 0 and p(¥;, X \W;_;) > 0 for each i.
Then for each i there exists a uniformly continuous mapping 7;: (X,p) = I

such that

) 7(U;) =0 and 7(X\)) = L

Similarly by condition (iii) there exists a uniformly continuous mapping
g:: (X\W,,p) — I for each i such that

3) g(C\W) =0 and g(C'\W) = L.
Let us define f;: W,_,\W, = I by
4) fi(x) = 1()gix) + (1 = 5(x))gis1(x),  x € W_\W,.

Then clearly f; is uniformly continuous w.r.t. p by the uniform continuity of 7,
g; and g, . From (2) it follows that

() [ilW_\V)) = g and fi|(U\W) = g;,, foralli.
Moreover by (3) and (4) we obtain
(6) f(Cn (W_\W)) =0 and £(C' N (W_\W)) = 1.

Since X = UX,(W_,\W,) by assumption (ii), we can define a mapping
f: X - Iby

™) fIW_\W) = f; fori=1.2,....

Then the continuity of f is easily proved by use of (1) and (5). Furthermore, it
follows from (6) that f(C) = 0 and f(C’) = 1. To prove that

8) FIX\W;): (X\W,,p) = I is uniformly continuous for all i,

consider a covering U = {W_\W:j = 1,...,i} U{UW,:j=1,...,i
— 1} of X \W;. Then obviously (1) implies that Q. is a uniform covering of
(X \W,, p). On the other hand, from (5) we can deduce that f|(U\V|) = g,
for each j, which combined with (7) implies that f|U is uniformly continuous
w.r.t. p for each U € QL. Since 9 is a uniform covering, we obtain (8) and the
proof of the lemma is completed.

DEFINITION 1. Let p and p’ be metrics on X compatible with the topology of
X such that the identity mapping of (X, p) onto (X, p’) is uniformly continuous;
then we denote this relation by p > p’.

By the definition it is clear that d,(X,p) > d,(X,p’) if p > p'.

LeEMMA 2. Let {(C;,C}): i = 1,2,...,n} be a collection of n pairs of disjoint
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closed sets of (X, p). Then there exists a metric ¢ on X and continuous mappings
fitrX—>Li=1,...,n, such that

(i) o is compatible with the topology of X and p > o,

(i) £,(C) = 0 and f,(C}) = 1,

(iii) for any € > O there exists an open set U of X such that o(U) < € and
FiI(X\U): (X\U,0) — I is uniformly continuous for all i.

Here o(U) denotes the diameter of U w.r.t. o.
Proor. We define 4, ; = {x € X: p(x,C;) < 1/k,p(x,C}) < 1/k} and A4,
= U 4y,;. Then we have

0
(1) Ak+l C Ak and kO]Ak = Q

To show the latter half, let x be an arbitrary point of X. Then for each i there
exists k(i) such that x & A k(i) bY the assumption that C; N C; = J. Hence
if we put k = max{k(i): i = 1,...,n}, then we have x & UL 4, = 4,
since Ay; C Ay;y,; for all i. Thus we obtain ML 4, = &.

Suppose that A, = & for some k. Then we have 4,; = & and hence
o(C;, C}) > 1/k for all i. Therefore there exist uniformly continuous mappings
fi: (X,p) = I such that f;(C;) = 0 and f;(C;) = 1, which obviously satisfy
condition (iii) of the lemma. Hence we may assume that 4, # & for all k.

Now let {®;: i = 1,2,...} be a sequence of uniform open coverings of (X,
p) such that

2) U1 < U;, that is, A, is a star-refinement of A;, for each i,

3) p-mesh, <1/, 1,2 ....
We let
B, = S(A;, %) = U{U € A: UN A #+ B}
and
OV}( ={Bk} U {UE Gsz: Uun Ak =Q} for k = 1,2,....
Clearly we have
(4) °V, is a uniform covering of (X, p) for all .
Moreover we shall prove
() Vw1 <V, for each k,
) for each point x of X, {S(x,V): k = 1,2,...}

forms a neighborhood basis at x.
To prove (5), let V € V. In case V = B, ,,

SV, Ver1) = S(S(Agr1> Ugy1), Uy 1)
C S(Ak»%k) = Bk (S OV;(
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by (1) and (2). If V # By, then V € @, with ¥ N A, ,, = &. Hence
SV, V1) = SV, Uy y ) if S(V,Vieyy) N Ay = &, and

SV, Ves1) C S(Agr1,UE41) C S(A;,U) = By

if S(V,Vey1) N Agyy # . Thus in any case S(V, V) is contained in some
element of ¥}, and hence (5) is proved.

To show (6), let N be an arbitrary neighborhood of x. Then from (1) it
follows that x € X \A4; for some i. Since 4; is closed, we have S(x,,)
C N N (X\4;) for some k > i by (3), which implies S(x,V,) = S(x,Uy)
C N. Thus (6) is proved.

In view of (5) and (6), it can be shown that there exists a metric ¢ on X
compatible with the topology of X satisfying the condition

(7) Vg <A{Sy-ilx,0):x € X} <V, fori=12,...,

where S,(x, ) denotes the spherical neighborhood {x' € X: o(x,x") < ¢} (cf.
[1, Theorem 4]). It is clear that (7) combined with (4) implies condition (i) of
the lemma. Moreover we shall prove

(8) S(C\By, Vi) N (CA\By) = & for each i and k.

Let us assume the contrary. Then there exists V' € %V, with V' # B, such that
V N (C\By) # D and ¥ N (CA\B;) # <. But then p(C\B,, C)\B,) < 1/k
by (3), which contradicts the fact that p(C\By, C\By) > p(C\Ax, C\Ay)
> 1/k. Hence (8) is proved.

From (7) and (8) it follows that o(C\ B,, C'\B,) > 27%.

Now we let W, = S,,.4(4;,0) for k = 1,2, .... Then we have B, C W
because o(B,) < 227% by (7), and hence we obtain

©) o(C\W,, C\W,) > 27% for each i and k.

Furthermore we assert that
(10) o(Werr, X\H) >0 and 1 W, = @.
For, since A, C Ay, we have
(W1, X \W,) = 0(Sy-i(Ag41,0), X \W) > o(Syi(Ay, 0), X \W})

> 22—k _ 21—k > 0.

To prove the latter half of (10), assume the contrary. Then there exists a point
xg € N W,. Since limy_. o(4;, X \W;) = 0 and {4} is decreasing, we
have x; € M A,. But this contradicts (1), and hence (10) is proved.

By virtue of (9) and (10), we can apply Lemma 1 for each pair (C;, C}) and
we get continuous mappings f;: X — I fori = 1, ..., n such that f;(C;) = 0,
£(C;) = 1 and f;|(X \W,;) is uniformly continuous w.r.t. ¢ for each i and k.
Since limy _, , o(W;) = 0, each f; satisfies conditions (ii) and (iii) of the lemma, .
and hence the proof of the lemma is completed.

Let v be the metric on the k-dimensional cube I¥ such that 7(x,x’)
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= 3 |x; — xj| where x = (x,), x' = (x}).

DEFINITION 2. Let f be a continuous mapping of (X, p) into 7%. Then p(f)
denotes a metric on X defined by p(f)(x,x) = p(x,x’) + 7(f(x),f(x")) for
x, x' € X.

Clearly p(f) is compatible with the topology of X, and it is easy to see that
dy(X,p(f)) > dy(X,p) since p(f) > p. The following lemma is an extension
of [3, Theorem 3].

LeMMa 3. Let (X, 6) be a metric space and f a continuous mapping of X into I*
satisfying the condition that for any € > 0 there exists an open set U of X such
that

(i) o(U) < e
(i) fIX\U): (X\U,0) > I* is uniformly continuous. Then dy(X,o(f))
< max{d,(X,0),k}.

PROOF. Let us put n = max{d,(X,0),k}, and let {(C;,C}): i = 1,...,n + 1}
be an arbitrary collection of n + 1 pairs of closed sets with o(f)(C;,C}) > ¢
> Ofor all i. Then by the assumption, there exists an open set U of X such that

(1) o(U) < ¢/4 and f|(X\U) is uniformly continuous w.r.t. a.
Then o(f) is uniformly equivalent to ¢ on X \U, and hence we have
) o(C\U,C\U) >0 for all i.

Welet B = S, (U, 0); then we know that

(3) (f(C; N V),f(C; N V)) > ¢/4 foreachi

where 7 is the metric on /¥ as in Definition 2. To prove (3), let x € GnNnv
and x’ € C; N V. Then since o(f)(C;, C;) > e, we get

o(f)(x,x') = olx,x") + (f(x).f(x')) > e

But o(x,x’) < o(V) < o(U) + ¢/2 < 3¢/4 by (1), and hence 7(f(x),f(x))
> &/4, which means (3).

Since n > k, we can deduce from (3) that there exist closed sets D; of
I¥,i=1,...,n+ 1,such that

1 "\15,- can be expressed as a union of disjoint open sets £; and £/

@ - i '
with f(C; N V) C E;and f(C; N V) C Ej,
n+1 _
i
Then we can take open sets M, infk,i =1,..., n+ 1, such that
n+1 -
N Cl(M) = and
(6) =

D, c M; C C1 (M) C I'"\{f(C; N V) U f(C; N V)} for each i.



270 TATSUO GOTO

We let N; = E\M, and N, = E\M; for all i. Then N, and N are disjoint
closed sets in I%. Hence we have 7(N;, N;) > 0, which implies that

(7) o(N\U,N\U) > 0 for all i,
where N, = f~Y(N;) and N} = f~1(N;), because
o(/)N\U, N)\U) > 7N, Ny

and o is uniformly equivalent to o(f) on X \U.
Since o(U,X\V') > ¢/4, we can choose a closed set W in X such that
o(U,X\W) > 0 and o(W,X \V) > 0. Now we define

Pi= (N0 W)U C\WU and P;=(N;n W)U CHWU
fori =1,...,n+ 1. Then P, and P/ are disjoint closed sets of X \U and
o(P;, P}) > min{o(N\U, N\U),o(W, X \V'),s(C\U, C\U)} > 0

by (2) and (7). Since d,(X \U,0) < d,(X,0) < n, we can choose closed sets 4;
inX\U,i =1,...,n+ 1, such that

38) A; separates X \U between P, and P; for all i,
n+1

(9) .ﬂlA,- = Q.
i=

Finally we define B, = f~!(Cl(M;)) N W for i = 1,...,n+ 1. Then in
view of (4) and (6) we know that

(10) B, separates W between C; N W and C; N W for all i,
n+1
(11) NB =2

Since A; N W C B, for each i, it follows from (8) and (10) that
(12) A; U B; separates X between C; and C; for all i.

It remains to prove that
n+l

(13) N B) =2
=

Since (4; U B;) N W = B;, we have N"*1(4;, U B,) N W = & by (11). On
the other hand N*}(4; U B)\W C N4, = & by (9), which proves (13).
Therefore we can conclude that d,(X,0(f)) < n, and the proof of the lemma
is completed.

3. Main theorem. Now we shall proceed to the proof of the following
theorem.

THEOREM. Let (X, p) be a metric space with dy(X, p) < dim X and let k be any
integer with dy(X,p) < k < dim X. Then there exists a topologically equivalent
metric py such that dy(X,p;) = k.
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PROOF. Let us put n = dim X. Then there exists a collection {(C;, C}): i
= 1,...,n} of n pairs of disjoint closed sets of X such that
n
(1)  if B, separates X between C; and C; for each i, then ﬂl B; # &.
i=

Then by Lemma 2 there exists a metric 0 on X and continuous mappings
firX—=1i=1,...,n, such that

) o is compatible with the topology of X and p > o,

() f(C;) =0 and f(C}) =1,
for any ¢ > 0 there exists an open set U of X such that o(U) < ¢
and f;|(X \U) is uniformly continuous w.r.t. ¢ for all i.

For each k with d,(X,p) < k < n, let us define g;: X — I* by g(x)
= (fi(x), ..., £(x)). Then by (4), g, satisfies the condition that

for any ¢ > 0 there exists an open set U of X such that o(U) < &
and g, |(X \U) is uniformly continuous w.r.t. .

Hence we can apply Lemma 3 to g, and we obtain dy(X,0(gy))
< max{dy(X,0),k}. Since p > o by (2), we have dy(X,p) > dy(X, o), which
implies that

(6) dy(X,0(gx)) < k.

In view of (3) we know that o(g;)(C;,C;) > 1 for i = 1, ..., k. Then we
deduce from (1) that d,(X, 0(g,)) > k. Combining with (6), we conclude that
dy(X,p) = k where p, = o(g;), which completes the proof of the theorem.
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