ON THE REALIZATION OF THE METRIC-DEPENDENT DIMENSION FUNCTION d_2

DEDICATED TO KIITI MORITA ON HIS 60TH BIRTHDAY

TATSUO GOTO

ABSTRACT. Let (X, ρ) be a metric space with $d_2(X, \rho) < \dim X$ where d_2 denotes the metric-dependent dimension function introduced by K. Nagami and J. H. Roberts [2]. Then it will be shown that for any integer k with $d_2(X, \rho) \le k \le \dim X$ there exists a topologically equivalent metric ρ_k with $d_2(X, \rho_k) = k$. This extends a result of J. C. Nichols [3] and answers the problem raised by K. Nagami and J. H. Roberts [2] in the affirmative.

1. Introduction. Let (X, ρ) be a nonempty metric space. Then the metric-dependent dimension $d_2(X, \rho)$ is defined to be at most n if for any collection $\{(C_i, C_i'): i = 1, \ldots, n+1\}$ of n+1 pairs of closed sets with $\rho(C_i, C_i') > 0$, there exist closed sets B_i , $i = 1, \ldots, n+1$, such that (i) B_i separates X between C_i and C_i' for each i, and (ii) $\bigcap_{i=1}^{n+1} B_i = \emptyset$, where $\rho(C_i, C_i')$ denotes the distance between C_i and C_i' w.r.t. the metric ρ (cf. [2]). In this paper the following realization theorem for d_2 will be proved, which answers the problem posed by [2] in the affirmative.

THEOREM. Let (X, ρ) be a metric space with $d_2(X, \rho) < \dim X$, and let k be any integer with $d_2(X, \rho) \leq k \leq \dim X$. Then there exists a topologically equivalent metric ρ_k such that $d_2(X, \rho_k) = k$.

A similar assertion was proved by J. C. Nichols [3] in the case where (X, ρ) belongs to some special class of spaces which are subsets of finite dimensional Euclidean cubes with the usual metrics.

Throughout the paper, (X, ρ) denotes a metric space with a metric ρ which is compatible with the topology of X.

- 2. Some lemmas. Let (C, C') be a pair of closed sets of (X, ρ) with $\rho(C, C') > 0$; then there exists a uniformly continuous mapping f of (X, ρ) into the closed unit interval I such that f(C) = 0 and f(C') = 1. More generally we shall prove
- LEMMA 1. Let (C, C') be a pair of disjoint closed sets and $\{W_i : i = 1, 2, ...\}$ a decreasing sequence of open sets in (X, ρ) such that
 - (i) $\rho(W_{i+1}, X \setminus W_i) > 0$ for all i,
 - (ii) $\bigcap_{i=1}^{\infty} W_i = \emptyset$,
 - (iii) $\rho(C \backslash W_i, C' \backslash W_i) > 0$ for all i.

Received by the editors September 19, 1975.

AMS (MOS) subject classifications (1970). Primary 54F45, 54E35; Secondary 54C30. Key words and phrases. Metric spaces, metric-dependent dimension d_2 , realizations of d_2 .

C American Mathematical Society 1976

Then there exists a continuous mapping $f: X \to I$ such that f(C) = 0, f(C') = 1 and $f|(X \setminus W_i)$ is uniformly continuous w.r.t. ρ for each i.

PROOF. By assumption (i) we can choose open sets U_i and V_i , i = 1, 2, ..., such that

$$(1) W_i \subset U_i \subset V_i \subset W_{i-1}, W_0 = X,$$

with $\rho(W_i, X \setminus U_i) > 0$, $\rho(U_i, X \setminus V_i) > 0$ and $\rho(V_i, X \setminus W_{i-1}) > 0$ for each i.

Then for each i there exists a uniformly continuous mapping τ_i : $(X, \rho) \to I$ such that

(2)
$$\tau_i(U_i) = 0 \text{ and } \tau_i(X \setminus V_i) = 1.$$

Similarly by condition (iii) there exists a uniformly continuous mapping $g_i: (X \setminus W_i, \rho) \to I$ for each i such that

(3)
$$g_i(C \setminus W_i) = 0$$
 and $g_i(C' \setminus W_i) = 1$.

Let us define $f_i: W_{i-1}\backslash W_i \to I$ by

(4)
$$f_i(x) = \tau_i(x)g_i(x) + (1 - \tau_i(x))g_{i+1}(x), \qquad x \in W_{i-1}\backslash W_i.$$

Then clearly f_i is uniformly continuous w.r.t. ρ by the uniform continuity of τ_i , g_i and g_{i+1} . From (2) it follows that

(5)
$$f_i|(W_{i-1}\backslash V_i) = g_i \text{ and } f_i|(U_i\backslash W_i) = g_{i+1} \text{ for all } i.$$

Moreover by (3) and (4) we obtain

(6)
$$f_i(C \cap (W_{i-1}\backslash W_i)) = 0$$
 and $f_i(C' \cap (W_{i-1}\backslash W_i)) = 1$.

Since $X = \bigcup_{i=1}^{\infty} (W_{i-1} \setminus W_i)$ by assumption (ii), we can define a mapping $f: X \to I$ by

(7)
$$f|(W_{i-1}\backslash W_i) = f_i \text{ for } i = 1, 2,$$

Then the continuity of f is easily proved by use of (1) and (5). Furthermore, it follows from (6) that f(C) = 0 and f(C') = 1. To prove that

(8)
$$f|(X \setminus W_i): (X \setminus W_i, \rho) \to I$$
 is uniformly continuous for all i,

consider a covering $\mathfrak{A} = \{W_{j-1} \setminus W_j : j = 1, \ldots, i\} \cup \{U_j \setminus V_{j+1} : j = 1, \ldots, i - 1\}$ of $X \setminus W_i$. Then obviously (1) implies that \mathfrak{A} is a uniform covering of $(X \setminus W_i, \rho)$. On the other hand, from (5) we can deduce that $f \mid (U_j \setminus V_{j+1}) = g_{j+1}$ for each j, which combined with (7) implies that $f \mid U$ is uniformly continuous w.r.t. ρ for each $U \in \mathfrak{A}$. Since \mathfrak{A} is a uniform covering, we obtain (8) and the proof of the lemma is completed.

DEFINITION 1. Let ρ and ρ' be metrics on X compatible with the topology of X such that the identity mapping of (X, ρ) onto (X, ρ') is uniformly continuous; then we denote this relation by $\rho > \rho'$.

By the definition it is clear that $d_2(X, \rho) \ge d_2(X, \rho')$ if $\rho > \rho'$.

LEMMA 2. Let $\{(C_i, C_i'): i = 1, 2, ..., n\}$ be a collection of n pairs of disjoint

closed sets of (X, ρ) . Then there exists a metric σ on X and continuous mappings $f_i \colon X \to I, i = 1, \ldots, n$, such that

(i) σ is compatible with the topology of X and $\rho > \sigma$,

(ii) $f_i(C_i) = 0$ and $f_i(C'_i) = 1$,

(iii) for any $\varepsilon > 0$ there exists an open set U of X such that $\sigma(U) \leqslant \varepsilon$ and $f_i(X \setminus U)$: $(X \setminus U, \sigma) \to I$ is uniformly continuous for all i.

Here $\sigma(U)$ denotes the diameter of U w.r.t. σ .

PROOF. We define $A_{k,i} = \{x \in X: \rho(x, C_i) \le 1/k, \rho(x, C_i') \le 1/k\}$ and $A_k = \bigcup_{i=1}^n A_{k,i}$. Then we have

(1)
$$A_{k+1} \subset A_k \text{ and } \bigcap_{k=1}^{\infty} A_k = \emptyset.$$

To show the latter half, let x be an arbitrary point of X. Then for each i there exists k(i) such that $x \notin A_{k(i),i}$ by the assumption that $C_i \cap C_i' = \emptyset$. Hence if we put $k = \max\{k(i): i = 1, ..., n\}$, then we have $x \notin \bigcup_{i=1}^n A_{k,i} = A_k$ since $A_{k,i} \subset A_{k(i),i}$ for all i. Thus we obtain $\bigcap_{k=1}^{\infty} A_k = \emptyset$.

Suppose that $A_k = \emptyset$ for some k. Then we have $A_{k,i} = \emptyset$ and hence $\rho(C_i, C_i') \ge 1/k$ for all i. Therefore there exist uniformly continuous mappings $f_i: (X, \rho) \to I$ such that $f_i(C_i) = 0$ and $f_i(C_i') = 1$, which obviously satisfy condition (iii) of the lemma. Hence we may assume that $A_k \ne \emptyset$ for all k.

Now let $\{\mathfrak{A}_i : i = 1, 2, ...\}$ be a sequence of uniform open coverings of (X, ρ) such that

(2)
$$\mathfrak{A}_{i+1} \stackrel{*}{<} \mathfrak{A}_i$$
, that is, \mathfrak{A}_{i+1} is a star-refinement of \mathfrak{A}_i , for each i,

$$\rho - \operatorname{mesh} \, \mathfrak{A}_i < 1/i, \qquad i, 1, 2, \ldots$$

We let

$$B_k = S(A_k, \mathcal{Q}_k) = \bigcup \{ U \in \mathcal{Q}_k \colon U \cap A_k \neq \emptyset \}$$

and

$$\mathcal{V}_k = \{B_k\} \cup \{U \in \mathcal{Q}_k : U \cap A_k = \emptyset\} \text{ for } k = 1, 2, \dots$$

Clearly we have

(4) V_k is a uniform covering of (X, ρ) for all k. Moreover we shall prove

$$(5) \qquad \qquad {^*}\nabla_{k+1} < \nabla_k \quad \text{for each } k,$$

(6) for each point
$$x$$
 of X , $\{S(x, \mathcal{V}_k): k = 1, 2, ...\}$ forms a neighborhood basis at x .

To prove (5), let $V \in \mathcal{V}_{k+1}$. In case $V = B_{k+1}$,

$$S(V, \mathcal{N}_{k+1}) = S(S(A_{k+1}, \mathcal{N}_{k+1}), \mathcal{N}_{k+1})$$

$$\subset S(A_k, \mathcal{N}_k) = B_k \in \mathcal{N}_k$$

by (1) and (2). If $V \neq B_{k+1}$, then $V \in \mathfrak{A}_{k+1}$ with $V \cap A_{k+1} = \emptyset$. Hence $S(V, \mathbb{Y}_{k+1}) = S(V, \mathfrak{A}_{k+1})$ if $S(V, \mathbb{Y}_{k+1}) \cap A_{k+1} = \emptyset$, and

$$S(V, \mathcal{N}_{k+1}) \subset S(A_{k+1}, \mathcal{N}_{k+1}^*) \subset S(A_k, \mathcal{N}_k) = B_k$$

if $S(V, \mathcal{V}_{k+1}) \cap A_{k+1} \neq \emptyset$. Thus in any case $S(V, \mathcal{V}_{k+1})$ is contained in some element of \mathcal{V}_k , and hence (5) is proved.

To show (6), let N be an arbitrary neighborhood of x. Then from (1) it follows that $x \in X \setminus A_i$ for some i. Since A_i is closed, we have $S(x, \mathfrak{A}_k) \subset N \cap (X \setminus A_i)$ for some $k \ge i$ by (3), which implies $S(x, \mathfrak{I}_k) = S(x, \mathfrak{A}_k) \subset N$. Thus (6) is proved.

In view of (5) and (6), it can be shown that there exists a metric σ on X compatible with the topology of X satisfying the condition

(7)
$$\mathbb{V}_{i+1} < \{S_{2^{-i}}(x,\sigma): x \in X\} < \mathbb{V}_i \text{ for } i = 1, 2, \ldots,$$

where $S_{\varepsilon}(x,\sigma)$ denotes the spherical neighborhood $\{x' \in X : \sigma(x,x') < \varepsilon\}$ (cf. [1, Theorem 4]). It is clear that (7) combined with (4) implies condition (i) of the lemma. Moreover we shall prove

(8)
$$S(C_i \backslash B_k, \mathcal{N}_k) \cap (C_i \backslash B_k) = \emptyset$$
 for each i and k.

Let us assume the contrary. Then there exists $V \in \mathcal{V}_k$ with $V \neq B_k$ such that $V \cap (C_i \backslash B_k) \neq \emptyset$ and $V \cap (C_i' \backslash B_k) \neq \emptyset$. But then $\rho(C_i \backslash B_k, C_i' \backslash B_k) < 1/k$ by (3), which contradicts the fact that $\rho(C_i \backslash B_k, C_i' \backslash B_k) \geqslant \rho(C_i \backslash A_k, C_i' \backslash A_k) \geqslant 1/k$. Hence (8) is proved.

From (7) and (8) it follows that $\sigma(C_i \backslash B_k, C_i \backslash B_k) \ge 2^{-k}$.

Now we let $W_k = S_{2^{2-k}}(A_k, \sigma)$ for $k = 1, 2, \ldots$. Then we have $B_k \subset W_k$ because $\sigma(B_k) \leq 2^{2-k}$ by (7), and hence we obtain

(9)
$$\sigma(C_i \backslash W_k, C_i \backslash W_k) \ge 2^{-k}$$
 for each i and k.

Furthermore we assert that

(10)
$$\sigma(W_{k+1}, X \setminus W_k) > 0 \text{ and } \bigcap_{k=1}^{\infty} W_k = \emptyset.$$

For, since $A_{k+1} \subset A_k$, we have

$$\sigma(W_{k+1}, X \setminus W_k) = \sigma(S_{2^{1-k}}(A_{k+1}, \sigma), X \setminus W_k) \geqslant \sigma(S_{2^{1-k}}(A_k, \sigma), X \setminus W_k)$$
$$\geqslant 2^{2-k} - 2^{1-k} > 0.$$

To prove the latter half of (10), assume the contrary. Then there exists a point $x_0 \in \bigcap_{k=1}^{\infty} W_k$. Since $\lim_{k \to \infty} \sigma(A_k, X \setminus W_k) = 0$ and $\{A_k\}$ is decreasing, we have $x_0 \in \bigcap_{k=1}^{\infty} A_k$. But this contradicts (1), and hence (10) is proved.

By virtue of (9) and (10), we can apply Lemma 1 for each pair (C_i, C_i') and we get continuous mappings $f_i \colon X \to I$ for $i = 1, \ldots, n$ such that $f_i(C_i) = 0$, $f_i(C_i') = 1$ and $f_i|(X \setminus W_k)$ is uniformly continuous w.r.t. σ for each i and k. Since $\lim_{k \to \infty} \sigma(W_k) = 0$, each f_i satisfies conditions (ii) and (iii) of the lemma, and hence the proof of the lemma is completed.

Let τ be the metric on the k-dimensional cube I^k such that $\tau(x, x')$

$$=\sum_{i=1}^{k} |x_i - x_i'|$$
 where $x = (x_i), x' = (x_i').$

DEFINITION 2. Let f be a continuous mapping of (X, ρ) into I^k . Then $\rho(f)$ denotes a metric on X defined by $\rho(f)(x, x') = \rho(x, x') + \tau(f(x), f(x'))$ for $x, x' \in X$.

Clearly $\rho(f)$ is compatible with the topology of X, and it is easy to see that $d_2(X, \rho(f)) \ge d_2(X, \rho)$ since $\rho(f) > \rho$. The following lemma is an extension of [3, Theorem 3].

LEMMA 3. Let (X, σ) be a metric space and f a continuous mapping of X into I^k satisfying the condition that for any $\varepsilon > 0$ there exists an open set U of X such that

- (i) $\sigma(U) \leq \varepsilon$.
- (ii) $f|(X\backslash U): (X\backslash U, \sigma) \to I^k$ is uniformly continuous. Then $d_2(X, \sigma(f)) \leq \max\{d_2(X, \sigma), k\}$.

PROOF. Let us put $n = \max\{d_2(X, \sigma), k\}$, and let $\{(C_i, C_i'): i = 1, ..., n + 1\}$ be an arbitrary collection of n + 1 pairs of closed sets with $\sigma(f)(C_i, C_i') \ge \varepsilon > 0$ for all i. Then by the assumption, there exists an open set U of X such that

(1)
$$\sigma(U) \leq \varepsilon/4$$
 and $f(X \setminus U)$ is uniformly continuous w.r.t. σ .

Then $\sigma(f)$ is uniformly equivalent to σ on $X \setminus U$, and hence we have

(2)
$$\sigma(C_i \setminus U, C_i \setminus U) > 0$$
 for all i .

We let $B = S_{\epsilon/4}(U, \sigma)$; then we know that

(3)
$$\tau(f(C_i \cap V), f(C'_i \cap V)) \ge \varepsilon/4 \quad \text{for each } i$$

where τ is the metric on I^k as in Definition 2. To prove (3), let $x \in C_i \cap V$ and $x' \in C_i' \cap V$. Then since $\sigma(f)(C_i, C_i') \ge \varepsilon$, we get

$$\sigma(f)(x,x') = \sigma(x,x') + \tau(f(x),f(x')) \geqslant \varepsilon.$$

But $\sigma(x, x') \le \sigma(V) \le \sigma(U) + \varepsilon/2 \le 3\varepsilon/4$ by (1), and hence $\tau(f(x), f(x')) \ge \varepsilon/4$, which means (3).

Since $n \ge k$, we can deduce from (3) that there exist closed sets \tilde{D}_i of I^k , $i = 1, \ldots, n+1$, such that

(4) $I^{k} \setminus \tilde{D}_{i} \text{ can be expressed as a union of disjoint open sets } \tilde{E}_{i} \text{ and } \tilde{E}'_{i}$ with $f(C_{i} \cap V) \subset \tilde{E}_{i}$ and $f(C'_{i} \cap V) \subset \tilde{E}'_{i}$,

$$\bigcap_{i=1}^{n+1} \tilde{E}_i = \varnothing.$$

Then we can take open sets \tilde{M}_i in I^k , i = 1, ..., n + 1, such that

(6)
$$\bigcap_{i=1}^{n+1} \operatorname{Cl}(\tilde{M}_i) = \emptyset \text{ and }$$

$$\tilde{D}_i \subset \tilde{M}_i \subset \operatorname{Cl}(\tilde{M}_i) \subset I^k \setminus \{ f(C_i \cap V) \cup f(C_i' \cap V) \} \text{ for each } i.$$

We let $\tilde{N}_i = \tilde{E}_i \backslash \tilde{M}_i$ and $\tilde{N}_i' = \tilde{E}_i' \backslash \tilde{M}_i$ for all *i*. Then \tilde{N}_i and \tilde{N}_i' are disjoint closed sets in I^k . Hence we have $\tau(\tilde{N}_i, \tilde{N}_i') > 0$, which implies that

(7)
$$\sigma(N_i \setminus U, N_i \setminus U) > 0 \text{ for all } i,$$

where $N_i = f^{-1}(\tilde{N}_i)$ and $N'_i = f^{-1}(\tilde{N}'_i)$, because

$$\sigma(f)(N_i \backslash U, N_i' \backslash U) \geqslant \tau(\widetilde{N}_i, \widetilde{N}_i')$$

and σ is uniformly equivalent to $\sigma(f)$ on $X \setminus U$.

Since $\sigma(U, X \setminus V) \ge \varepsilon/4$, we can choose a closed set W in X such that $\sigma(U, X \setminus W) > 0$ and $\sigma(W, X \setminus V) > 0$. Now we define

$$P_i = ((N_i \cap W) \cup C_i) \setminus U$$
 and $P'_i = ((N'_i \cap W) \cup C'_i) \setminus U$

for i = 1, ..., n + 1. Then P_i and P'_i are disjoint closed sets of $X \setminus U$ and

$$\sigma(P_i, P_i') \geqslant \min\{\sigma(N_i \setminus U, N_i' \setminus U), \sigma(W, X \setminus V), \sigma(C_i \setminus U, C_i' \setminus U)\} > 0$$

by (2) and (7). Since $d_2(X \setminus U, \sigma) \le d_2(X, \sigma) \le n$, we can choose closed sets A_i in $X \setminus U$, $i = 1, \ldots, n + 1$, such that

(8)
$$A_i$$
 separates $X \setminus U$ between P_i and P'_i for all i ,

$$\bigcap_{i=1}^{n+1} A_i = \varnothing.$$

Finally we define $B_i = f^{-1}(\operatorname{Cl}(\tilde{M}_i)) \cap W$ for i = 1, ..., n + 1. Then in view of (4) and (6) we know that

(10)
$$B_i$$
 separates W between $C_i \cap W$ and $C'_i \cap W$ for all i,

$$\bigcap_{i=1}^{n+1} B_i = \varnothing.$$

Since $A_i \cap W \subset B_i$ for each i, it follows from (8) and (10) that

(12)
$$A_i \cup B_i$$
 separates X between C_i and C_i for all i.

It remains to prove that

$$\bigcap_{i=1}^{n+1} (A_i \cup B_i) = \emptyset.$$

Since $(A_i \cup B_i) \cap W = B_i$, we have $\bigcap_{i=1}^{n+1} (A_i \cup B_i) \cap W = \emptyset$ by (11). On the other hand $\bigcap_{i=1}^{n+1} (A_i \cup B_i) \setminus W \subset \bigcap_{i=1}^{n+1} A_i = \emptyset$ by (9), which proves (13). Therefore we can conclude that $d_2(X, \sigma(f)) \leq n$, and the proof of the lemma is completed.

3. **Main theorem.** Now we shall proceed to the proof of the following theorem.

THEOREM. Let (X, ρ) be a metric space with $d_2(X, \rho) < \dim X$ and let k be any integer with $d_2(X, \rho) \leq k \leq \dim X$. Then there exists a topologically equivalent metric ρ_k such that $d_2(X, \rho_k) = k$.

PROOF. Let us put $n = \dim X$. Then there exists a collection $\{(C_i, C_i'): i = 1, ..., n\}$ of n pairs of disjoint closed sets of X such that

(1) if
$$B_i$$
 separates X between C_i and C'_i for each i , then $\bigcap_{i=1}^n B_i \neq \emptyset$.

Then by Lemma 2 there exists a metric σ on X and continuous mappings $f_i: X \to I, i = 1, \ldots, n$, such that

(2) σ is compatible with the topology of X and $\rho > \sigma$,

(3)
$$f_i(C_i) = 0$$
 and $f_i(C'_i) = 1$,

(4) for any $\varepsilon > 0$ there exists an open set U of X such that $\sigma(U) \leqslant \varepsilon$ and $f_i|(X\setminus U)$ is uniformly continuous w.r.t. σ for all i.

For each k with $d_2(X, \rho) \le k \le n$, let us define $g_k : X \to I^k$ by $g_k(x) = (f_1(x), \dots, f_k(x))$. Then by (4), g_k satisfies the condition that

(5) for any $\varepsilon > 0$ there exists an open set U of X such that $\sigma(U) \leq \varepsilon$ and $g_k|(X\setminus U)$ is uniformly continuous w.r.t. σ .

Hence we can apply Lemma 3 to g_k , and we obtain $d_2(X, \sigma(g_k)) \le \max\{d_2(X, \sigma), k\}$. Since $\rho > \sigma$ by (2), we have $d_2(X, \rho) \ge d_2(X, \sigma)$, which implies that

$$(6) d_2(X, \sigma(g_k)) \leqslant k.$$

In view of (3) we know that $\sigma(g_k)(C_i, C_i') \ge 1$ for i = 1, ..., k. Then we deduce from (1) that $d_2(X, \sigma(g_k)) \ge k$. Combining with (6), we conclude that $d_2(X, \rho_k) = k$ where $\rho_k = \sigma(g_k)$, which completes the proof of the theorem.

REFERENCES

- 1. J. R. Isbell, *Uniform spaces*, Math. Surveys, no. 12, Amer. Math. Soc., Providence, R.I., 1964. MR 30 #561.
- 2. K. Nagami and J. H. Roberts, A study of metric-dependent dimension functions, Trans. Amer. Math. Soc. 129 (1967), 414-435. MR 35 #6131.
- 3. J. C. Nichols, The realization of dimension function d_2 , Fund. Math. 77 (1973), 211–217. MR 48 #3023.

DEPARTMENT OF MATHEMATICS, FACULTY OF EDUCATION, SAITAMA UNIVERSITY, URAWA, JAPAN