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AN A -PROPER MAP WITH PRESCRIBED
TOPOLOGICAL DEGREE

MALCOLM COUSLAND1

Abstract. For any given element a of the ring *Z = ZN//, where / is the

ideal of integer sequences convergent to 0, an A -proper map in l2 is

constructed whose degree in the sense of S. F. Wong is equal to a.

The concept of an A -proper map acting in a Banach space was introduced

by Petryshyn [6, p. 157] (originally called an operator satisfying condition

(H)). A topological degree for such maps was defined by Browder and

Petryshyn [1], [2] as a generalization of the Leray-Schauder degree [5] for maps

of the form Identity + Compact. Browder and Petryshyn established the basic

properties of their degree, Deg (T, G,y), which is set valued (see the note after

Definition 3 for its definition), invariant under suitable homotopies, satisfies a

weakened sum formula

Deg (T, G,y) Q Deg (T, Gx ,y) + Deg (T, G2,y),

and if Deg (T, G,y) =£ {0} then there is an x E G such that T(x) = y. Wong

[9] has given a new definition of the degree with values in a ring *Z (see below)

which satisfies the sum formula with an equality sign. Later Wong [10] proved

a restricted product formula for the degree of the product TU under the

restriction that at least one of the maps T or U must be of the form Identity

+ Compact.

The purpose of this paper is, given a E *Z, to construct an /I-proper map

in l2 whose degree is a. In the following let A' be a real Banach space. Let

cl (G) denote the closure of G and 9 G the topological boundary of G for

subsets G of X.

Definition 1. An (oriented) projectionally complete scheme T for map-

pings from subsets of X to X is a monotonically increasing sequence {Xn) of

(oriented) finite dimensional subspaces of X and a sequence {Pn) of continuous

linear projections Pn: X -» Xn with PnX = X„, such that f„x -> x as n ^ oo

for each x E X.

This definition is adapted from Fitzpatrick [4, Definition 1.1, p. 537]. The

following definition is that of Petryshyn [7, Definition 1, p. 271].

Definition 2.     Let G be a subset of X, and Y a projectionally complete
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scheme in the sense of Definition 1. The mapping F: cl (G) —* X is .4-proper

with respect to T if for any bounded sequence {x„.} with xn G cl (G ) n X„.

such that PnT(xn)—>g G X, there exists a subsequence {xn } and an

x G cl (G) such that xn    -> x as k -» oo and F(x) = g.

Such mappings include mappings of the form I + C where / is the identity

and C is compact [6, Remark 3, p. 162], mappings of the form I + S + C

under certain conditions where S is strictly contractive [6, Theorem 7, p. 162],

and F-monotone mappings under certain conditions [7, Corollary 2.1, p. 220

and Theorem 2.3, p. 222]. This latter class includes monotone mappings [7, p.

228] and /-monotone or accretive mappings [7, pp. 230-231].

The following definition is adapted from Wong [9, p. 406] and makes use of

the classical degree in R", deg (f,D,q), called the Brouwer degree of / at o

relative to D (cf. [3, Definition 6.3, p. 31] or [8, Definition 3.14, p. 71]). Here

D is a bounded open set in oriented Euclidean «-space F",/is a continuous

mapping from cl (D) into F", and q G /(9-D)- By *Z we denote the ring of all

equivalence classes [sn] = {{/„}: /„ = sn for all n sufficiently large} of sequenc-

es of integers.

Definition 3. Let F: (G) -> X be A -proper with respect to a given

approximation scheme, where G„ = G f~l Xn is bounded and open in Xn for all

n sufficiently large and Tn = Pn T\Ga is continuous for all n sufficiently large.

Let y G X\T(dG). Then the degree of T at y relative to G is the element

D(T, G,y) = [s„] of *Z such that

s„ = àeg(T„,Gn,P„y)

for all n sufficiently large.

Note that deg(Tn,Gn,Pny) is defined for all n sufficiently large since

Pny G Tn(dG„) for. all n sufficiently large by [2, Lemma 1, p. 220]. The degree

of Browder and Petryshyn [1], [2], Deg (T,G,y), is the set of limit points of

{deg (T„,G„,P„y)} including possibly ±oo.

In the following the Banach space l2 of square summable real sequences

with norm ||(a,)|| = 2/ii af WlU have the oriented projectionally complete

scheme T(l2) given by

X„ = span (ex,e2, ...,e„)    for n = 1,2, ...

(where e¡ has coordinate 1 in the z'th place and 0 elsewhere) and

/  oo \ n

il  2  «,«,    =  21 «ie¡    for « = 1, 2, ....
\/=l        /       i=l

The orientation of Xn is determined by the order (ex,e2,... ,en) of the basis

elements. Let Hm be the subset of l2 given by

Hm = {x G l2: \\mem - x\\ < \]

and let G be given by

00

G=   U Hm.
m=\
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Then, as is shown in Appendix I, the Hm have disjoint closures, cl (Hm) D Xn

is empty for all m > n, and cl (G) = U^=1 cl (Hm).

Theorem. Given any element [sn ] of *Z, there is a mapping T: cl (G ) —» l2

which is A-proper with respect to T(l2) and such that D(T,G,0) = [sn].

Proof. Let t0 = tx = 0 and tn = s„ if n > 2. Then put

K = Vn - tn-\ I.   e„ = sign(i„ - t„_x),

and

a„ = In - 1,   bn = 2n,       n = 1,2,-

Define the mapping F: cl (G ) —> /2 as follows. For x = 2,°11 a, e, G cl (G )

there is a unique m such that x G cl (Hm). Then put T(x) = 2/*Li ■",£; where

^m-l = Em IT («m - ™ - a,am_,),

n («„(am - w - ¿,am_!),

T); = a(    for all /' ¥= m — \, m,

for m > 2, and rj( = a( for all i if m — 1.

First we show T is ^-proper. Let {xn. E Gn) be a bounded sequence and

g G l2 be such that Pn T(xn) -* g. Let

Ii=i*«,- =  2 «,,„/,,    PnJ(x ) =  2 /?,,„,<?,,    and   g =  2 J¡e,
J Í =   1 J J J t =   1 -* 7=1

"7

S
1=1

oc

2/=i
Since [xn) is bounded, there is a p such that {x„} G U£=1 cl (//„,), for if

y E cl (//„,) then ||_y|| > ||wem|| — ||.y - mem\\ > w - j. There is a subse-

quence of (x„} (call it [xn} again) and a q E {\,... ,p] such  that [xn}

- Cl W      1
Now   (a,^}^!    is   bounded   for   each   fixed   i,   since    |a,„.| < j for /

¥" q and |a?j„.| < q + £.     Hence     there     is     a     further     subsequence

{xn    } of [xn} and a¡ (i = ï,... ,q) such that a,„     -» a, as A: —> oo, / = 1,

..., q. Put a, = y, for /' > q, and x = 2,°li a,-e,-. "Theîen

nm x\\ <   2   Ik»    e¡ - a,-e,-|| +
i = l        A">

ni(k) 00

i-e+1      7(,i)        1=9+1

=    2    Wi n 2., (/W> - yttei=q + \ •j(k)

<   2   Win     - «/I + Ik     T(xn    ) - g\\

which tends to zero as k —» oo.  Hence x
"/(*)

x and x E l2.  Indeed jc

: cl (Hq) since {x„y(jfc)} Ç cl (//,).

It remains to show that T(x) = g. Let T(x) = 2S= i 1),e/ ■ Assume q > 1.
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Since x G cl (Hq), 17, = a¡ = y¡, i # q - 1, q,

k„

vi =e« n K -1 - «iv«) = £■e« n K^, - « - ^«J

and

Vq = .J («, - q - ¿i«,-i) -   fon   u (a^(i) - ? - M,-!,^,)

=   lim ß,„     — v..

For the case # = 1, since F restricted to cl (Hx) is the identity, 17, = a,

= y¡ for all /' = 1,2,.... Hence in either case T(x) = 2* 1 ty e<

= 2/=i Y;^( = g> and F is ,4-proper with respect to T(/2).

We will now compute the degree of F at 0 relative to G. Since Hm n Xn

= 0 for m > n (see Appendix I), it follows that

G„ = G n X„ =   U Hmt„   where //m,„ = Hm n Xn.
m=\

Then

deg(F„,(7„,0)=   ¿   deg (F„, #„,,„,0)
m=\

by the sum formula for the Brouwer degree (see [3, Theorem 6.8, p. 32] or [8,

Theorem 3.16.5, p. 72]) since the Hm, and thus the Hmn, are disjoint for fixed

n. Now, for n > m > 2, Tn is the identity on all components except the

(m — l)st and wth. Thus, by the reduction formula for the Brouwer degree

(see [3, Theorem 10.1, p. 51] or [8, Theorem 3.16.7, p. 72]),

¿eg (F„,//„,,„,0) = àeg(Tn>m,H^„ n Em,0),

where Em = span (em_x,em) with orientation induced by the order of the

basis elements, and Tnm is equal to Tn restricted to Em. Let Um be the

translation on Em given by

Um{x) = x + mem.

Then it follows (see Appendix II) that

deg (F„im,//•„,,„ n Fm,0) = deg (Tn^mUm,U-x(Hmn n Fm),0).

Now

U-l(Hm>n n Em) = {x G Em: \\x\\ < J}

and

*«,m ^mx^m-l ^m-l    '   ®-m°m> im— \*'m— 1    '    Im^w
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where

and

T-i-l = £m IT (am - a¡am_x),
1=1

Jm =   û   («m - 6/«m_i).
( = 1

Hence, as shown by Cronin [3, pp. 38^40],

tez(Tn,mvm,v-x(Hm<n D Em),0) = Emkm.

Also Tn is the identity on HXn and 0 G cl (Hln) so deg (Tn, Hln,0) = 0. Hence

n n

feg(T„,G„,0) =   2   deg(7;,//m„,0) =   2   £mkm = '„
m=l m=l

since ?! = 0. Thus

Z>(F, G,0) = [<„] = [*„].

Appendix I.

1. We show that cl (Hm) n cl (//„) = 0 for m # «. If x E cl (//„,) and y

E cl (//„), then

Ik - y\\ > \\mem - nen\\ - \\mem - x\\ - \\ne„ - y\\

> (m2 + n2)X/2 - \ - \ > 2X'2 - 1 > 0.

Hence x =£ y and cl (Hm) n cl (//„) = 0.

2. It also follows that cl (G) = cl (\J%=xHm) = U£=1 cl (//J. For if

{g„} £ G is such that g„ —> x then there is an N such that \\gn — gm\\

< (21//2 - l)/2 for all n, m > N. Hence there is a p such that gn E Hp for all

n> N. Hence x G cl (/^) and cl (G) Q U£=1 cl (Hm). Clearly

U£=1 cl (/Yj C cl (G), so cl (G) - U£_, cl (//J.
3. We will now show that cl (Hm) n span (^,..., en) = 0 for all m > «.

If x G cl (//m) and v = 2"=i oí¡e¡ E span (<?,,... ,en) and w > « then

II*-dl
n II / " \'/2
2 a,-«?,-     = (w2 +  2 a,2 )      > w > 0.

i=l \ i=i      /

Hence x ¥= y and cl (Hm) n span (ej,... ,en) = 0, for m > «.

Appendix II. Let Z) be an open bounded subset of R",f a continuous

mapping from cl (D) to /?" and <? G /(3£>). Let x0 G Ibe fixed. Let {/be the

translation defined by U(x) = x + x0. We will show that

deg (fU,U~x(D),q) = deg (/,/),<?).

By the product formula for the Brouwer degree [8, Theorem 3.20, p. 75]
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deg (fU, U-l(D),q) = 2 deg (f,B„q) deg (U, U~x(D),Pi),
i

where F, are the bounded components of Fn\i/(3C/"'(£>)) = Rn\dD and

p¡ G B¡. But

deg (U,U-l(D),pi) = 2 sign\U'(x)\,

where | £/'(•*) I is the determinant of the Jacobian matrix of U at x, and the sum

is over all points x in U~x(p¿) D U~X(D), i.e. x = p¡ — x0, p¡ G B¡ n D.

Now U(x + h) — U(x) = h for ail x, h G R", so U'(x) is the identity matrix

and |i/'(*)| = L Hence,

deg (fU, U~x(D),q) - 2 deg U,B¡,q),
i

where the sum is over the bounded components of D. Thus by the sum

formula for the Brouwer degree (see [3, Theorem 6.8, p. 32] or [8, Theorem

3.16.5, p. 72]), deg (/[/, Í/"1 (D),q) = deg (f,D,q).
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