AN A-PROPER MAP WITH PRESCRIBED TOPOLOGICAL DEGREE

MALCOLM COUSLAND¹

ABSTRACT. For any given element α of the ring ${}^{\bullet}\mathbf{Z} = \mathbf{Z}^{N}/I$, where I is the ideal of integer sequences convergent to 0, an A-proper map in l_2 is constructed whose degree in the sense of S. F. Wong is equal to α .

The concept of an A-proper map acting in a Banach space was introduced by Petryshyn [6, p. 157] (originally called an operator satisfying condition (H)). A topological degree for such maps was defined by Browder and Petryshyn [1], [2] as a generalization of the Leray-Schauder degree [5] for maps of the form Identity + Compact. Browder and Petryshyn established the basic properties of their degree, Deg (T, G, y), which is set valued (see the note after Definition 3 for its definition), invariant under suitable homotopies, satisfies a weakened sum formula

$$Deg(T, G, y) \subseteq Deg(T, G_1, y) + Deg(T, G_2, y),$$

and if Deg $(T, G, y) \neq \{0\}$ then there is an $x \in G$ such that T(x) = y. Wong [9] has given a new definition of the degree with values in a ring *Z (see below) which satisfies the sum formula with an equality sign. Later Wong [10] proved a restricted product formula for the degree of the product TU under the restriction that at least one of the maps T or U must be of the form Identity + Compact.

The purpose of this paper is, given $\alpha \in {}^*\mathbf{Z}$, to construct an A-proper map in l_2 whose degree is α . In the following let X be a real Banach space. Let $\operatorname{cl}(G)$ denote the closure of G and ∂G the topological boundary of G for subsets G of X.

DEFINITION 1. An (oriented) projectionally complete scheme Γ for mappings from subsets of X to X is a monotonically increasing sequence $\{X_n\}$ of (oriented) finite dimensional subspaces of X and a sequence $\{P_n\}$ of continuous linear projections $P_n \colon X \to X_n$ with $P_n X = X_n$, such that $P_n x \to x$ as $n \to \infty$ for each $x \in X$.

This definition is adapted from Fitzpatrick [4, Definition 1.1, p. 537]. The following definition is that of Petryshyn [7, Definition 1, p. 271].

DEFINITION 2. Let G be a subset of X, and Γ a projectionally complete

Received by the editors May 27, 1975.

AMS (MOS) subject classifications (1970). Primary 47H99; Secondary 55C25.

Key words and phrases. A-proper map, topological degree, projectionally complete scheme, oriented projectionally complete scheme.

¹ The author's research was supported by a Commonwealth Postgraduate Research Award.

[©] American Mathematical Society 1976

scheme in the sense of Definition 1. The mapping $T: \operatorname{cl}(G) \to X$ is A-proper with respect to Γ if for any bounded sequence $\{x_{n_j}\}$ with $x_{n_j} \in \operatorname{cl}(G) \cap X_{n_j}$ such that $P_{n_j}T(x_{n_j}) \to g \in X$, there exists a subsequence $\{x_{n_{j(k)}}\}$ and an $x \in \operatorname{cl}(G)$ such that $x_{n_{j(k)}} \to x$ as $k \to \infty$ and T(x) = g.

Such mappings include mappings of the form I + C where I is the identity and C is compact [6, Remark 3, p. 162], mappings of the form I + S + C under certain conditions where S is strictly contractive [6, Theorem 7, p. 162], and K-monotone mappings under certain conditions [7, Corollary 2.1, p. 220 and Theorem 2.3, p. 222]. This latter class includes monotone mappings [7, p. 228] and J-monotone or accretive mappings [7, pp. 230–231].

The following definition is adapted from Wong [9, p. 406] and makes use of the classical degree in R^n , deg (f, D, q), called the Brouwer degree of f at q relative to D (cf. [3, Definition 6.3, p. 31] or [8, Definition 3.14, p. 71]). Here D is a bounded open set in oriented Euclidean n-space R^n , f is a continuous mapping from cl (D) into R^n , and $q \notin f(\partial D)$. By *Z we denote the ring of all equivalence classes $[s_n] = \{\{t_n\}: t_n = s_n \text{ for all } n \text{ sufficiently large}\}$ of sequences of integers.

DEFINITION 3. Let $T:(G) \to X$ be A-proper with respect to a given approximation scheme, where $G_n = G \cap X_n$ is bounded and open in X_n for all n sufficiently large and $T_n = P_n T|_{G_n}$ is continuous for all n sufficiently large. Let $y \in X \setminus T(\partial G)$. Then the degree of T at y relative to G is the element $D(T, G, y) = [s_n]$ of * \mathbb{Z} such that

$$s_n = \deg(T_n, G_n, P_n y)$$

for all n sufficiently large.

Note that $\deg(T_n, G_n, P_n y)$ is defined for all n sufficiently large since $P_n y \notin T_n(\partial G_n)$ for all n sufficiently large by [2, Lemma 1, p. 220]. The degree of Browder and Petryshyn [1], [2], $\operatorname{Deg}(T, G, y)$, is the set of limit points of $\{\deg(T_n, G_n, P_n y)\}$ including possibly $\pm \infty$.

In the following the Banach space l_2 of square summable real sequences with norm $\|(\alpha_i)\|^2 = \sum_{i=1}^{\infty} \alpha_i^2$ will have the oriented projectionally complete scheme $\Gamma(l_2)$ given by

$$X_n = \text{span}(e_1, e_2, \dots, e_n) \text{ for } n = 1, 2, \dots$$

(where e_i has coordinate 1 in the *i*th place and 0 elsewhere) and

$$P_n\left(\sum_{i=1}^{\infty} \alpha_i e_i\right) = \sum_{i=1}^{n} \alpha_i e_i \quad \text{for } n = 1, 2, \dots$$

The orientation of X_n is determined by the order (e_1, e_2, \ldots, e_n) of the basis elements. Let H_m be the subset of l_2 given by

$$H_m = \{x \in l_2 : ||me_m - x|| < \frac{1}{2}\}$$

and let G be given by

$$G = \bigcup_{m=1}^{\infty} H_m.$$

Then, as is shown in Appendix I, the H_m have disjoint closures, cl $(H_m) \cap X_n$ is empty for all m > n, and cl $(G) = \bigcup_{m=1}^{\infty} \operatorname{cl}(H_m)$.

THEOREM. Given any element $[s_n]$ of *Z, there is a mapping T: cl $(G) \rightarrow l_2$ which is A-proper with respect to $\Gamma(l_2)$ and such that $D(T,G,0) = [s_n]$.

PROOF. Let $t_0 = t_1 = 0$ and $t_n = s_n$ if $n \ge 2$. Then put

$$k_n = |t_n - t_{n-1}|, \quad \varepsilon_n = \operatorname{sign}(t_n - t_{n-1}),$$

and

$$a_n = 2n - 1, b_n = 2n, n = 1, 2, \dots$$

Define the mapping T: cl $(G) \rightarrow l_2$ as follows. For $x = \sum_{i=1}^{\infty} \alpha_i e_i \in \text{cl } (G)$ there is a unique m such that $x \in \operatorname{cl}(H_m)$. Then put $T(x) = \sum_{i=1}^{\infty} \eta_i e_i$ where

$$\eta_{m-1} = \varepsilon_m \prod_{i=1}^{k_m} (\alpha_m - m - a_i \alpha_{m-1}),$$

$$\eta_m = \prod_{i=1}^{k_m} (\alpha_m - m - b_i \alpha_{m-1}),$$

$$\eta_i = \alpha_i \text{ for all } i \neq m-1, m,$$

for $m \ge 2$, and $\eta_i = \alpha_i$ for all i if m = 1.

First we show T is A-proper. Let $\{x_{n_i} \in G_{n_i}\}$ be a bounded sequence and $g \in l_2$ be such that $P_{n_i}T(x_{n_i}) \to g$. Let

$$x_{n_j} = \sum_{i=1}^{n_j} \alpha_{i,n_j} e_i, \quad P_{n_j} T(x_{n_j}) = \sum_{i=1}^{n_j} \beta_{i,n_j} e_i, \text{ and } g = \sum_{i=1}^{\infty} \gamma_i e_i.$$

Since $\{x_{n_j}\}$ is bounded, there is a p such that $\{x_{n_j}\}\subseteq \bigcup_{m=1}^p\operatorname{cl}(H_m)$, for if $y\in\operatorname{cl}(H_m)$ then $\|y\|\geqslant \|me_m\|-\|y-me_m\|\geqslant m-\frac{1}{2}$. There is a subsequence of $\{x_{n_j}\}$ (call it $\{x_{n_j}\}$ again) and a $q\in\{1,\ldots,p\}$ such that $\{x_{n_j}\}$ \subseteq cl (H_a) .

Now $\{\alpha_{i,n_j}\}_{j=1}^{\infty}$ is bounded for each fixed i, since $|\alpha_{i,n_j}| \leq \frac{1}{2}$ for $i \neq q$ and $|\alpha_{q,n_j}| \leq q + \frac{1}{2}$. Hence there is a further subsequence $\{x_{n_{j(k)}}\}$ of $\{x_{n_j}\}$ and α_i $(i = 1, \ldots, q)$ such that $\alpha_{i,n_{j(k)}} \to \alpha_i$ as $k \to \infty$, $i = 1, \ldots, q$. Put $\alpha_i = \gamma_i$ for i > q, and $x = \sum_{i=1}^{\infty} \alpha_i e_i$. Then

$$\begin{aligned} \|x_{n_{j(k)}} - x\| & \leq \sum_{i=1}^{q} \|\alpha_{i,n_{j(k)}} e_i - \alpha_i e_i\| + \left\| \sum_{i=q+1}^{n_{j(k)}} \alpha_{i,n_{j(k)}} e_i - \sum_{i=q+1}^{\infty} \alpha_i e_i \right\| \\ & = \sum_{i=1}^{q} |\alpha_{i,n_{j(k)}} - \alpha_i| + \left\| \sum_{i=q+1}^{\infty} (\beta_{i,n_{j(k)}} - \gamma_i) e_i \right\| \\ & \leq \sum_{i=1}^{q} |\alpha_{i,n_{j(k)}} - \alpha_i| + \|P_{n_{j(k)}} T(x_{n_{j(k)}}) - g\| \end{aligned}$$

which tends to zero as $k \to \infty$. Hence $x_{n_{i(k)}} \to x$ and $x \in l_2$. Indeed x \in cl (H_q) since $\{x_{n_{j(k)}}\}\subseteq$ cl (H_q) . It remains to show that T(x)=g. Let $T(x)=\sum_{i=1}^{\infty}\eta_ie_i$. Assume q>1.

Since $x \in cl(H_q)$, $\eta_i = \alpha_i = \gamma_i$, $i \neq q - 1$, q,

$$\eta_{q-1} = \varepsilon_q \prod_{i=1}^{k_q} (\alpha_q - q - a_i \alpha_{q-1}) = \lim_{k \to \infty} \varepsilon_q \prod_{i=1}^{k_q} (\alpha_{q, n_{j(k)}} - q - a_i \alpha_{q-1, n_{j(k)}}) \\
= \lim_{k \to \infty} \beta_{q-1, n_{j(k)}} = \gamma_{q-1},$$

and

$$\begin{split} \eta_{q} &= \prod_{i=1}^{k_{q}} \left(\alpha_{q} - q - b_{i} \alpha_{q-1} \right) = \lim_{k \to \infty} \prod_{i=1}^{k_{q}} \left(\alpha_{q, n_{j(k)}} - q - b_{i} \alpha_{q-1, n_{j(k)}} \right) \\ &= \lim_{k \to \infty} \beta_{q, n_{j(k)}} = \gamma_{q}. \end{split}$$

For the case q=1, since T restricted to $\operatorname{cl}(H_1)$ is the identity, $\eta_i=\alpha_i=\gamma_i$ for all $i=1,2,\ldots$ Hence in either case $T(x)=\sum_{i=1}^{\infty}\eta_ie_i=\sum_{i=1}^{\infty}\eta_ie_i=g$, and T is A-proper with respect to $\Gamma(l_2)$.

We will now compute the degree of T at 0 relative to G. Since $H_m \cap X_n = \emptyset$ for m > n (see Appendix I), it follows that

$$G_n = G \cap X_n = \bigcup_{m=1}^n H_{m,n}$$
 where $H_{m,n} = H_m \cap X_n$.

Then

$$\deg (T_n, G_n, 0) = \sum_{m=1}^n \deg (T_n, H_{m,n}, 0)$$

by the sum formula for the Brouwer degree (see [3, Theorem 6.8, p. 32] or [8, Theorem 3.16.5, p. 72]) since the H_m , and thus the $H_{m,n}$, are disjoint for fixed n. Now, for $n \ge m \ge 2$, T_n is the identity on all components except the (m-1)st and mth. Thus, by the reduction formula for the Brouwer degree (see [3, Theorem 10.1, p. 51] or [8, Theorem 3.16.7, p. 72]),

$$\deg (T_n, H_{m,n}, 0) = \deg (T_{n,m}, H_{m,n} \cap E_m, 0),$$

where $E_m = \text{span}(e_{m-1}, e_m)$ with orientation induced by the order of the basis elements, and $T_{n,m}$ is equal to T_n restricted to E_m . Let U_m be the translation on E_m given by

$$U_m(x) = x + me_m.$$

Then it follows (see Appendix II) that

$$\deg (T_{n,m}, H_{m,n} \cap E_m, 0) = \deg (T_{n,m} U_m, U_m^{-1} (H_{m,n} \cap E_m), 0).$$

Now

$$U_m^{-1}(H_{m,n} \cap E_m) = \{x \in E_m : ||x|| < \frac{1}{2}\}$$

and

$$T_{n,m} U_m(\alpha_{m-1} e_{m-1} + \alpha_m e_m) = \gamma_{m-1} e_{m-1} + \gamma_m e_m,$$

where

$$\gamma_{m-1} = \varepsilon_m \prod_{i=1}^{k_m} (\alpha_m - a_i \alpha_{m-1}),$$

and

$$\gamma_m = \prod_{i=1}^{k_m} (\alpha_m - b_i \alpha_{m-1}).$$

Hence, as shown by Cronin [3, pp. 38-40],

$$\deg (T_{n,m} U_m, U_m^{-1}(H_{m,n} \cap E_m), 0) = \varepsilon_m k_m.$$

Also T_n is the identity on $H_{1,n}$ and $0 \notin \text{cl}(H_{1,n})$ so $\text{deg}(T_n, H_{1,n}, 0) = 0$. Hence

$$\deg (T_n, G_n, 0) = \sum_{m=1}^n \deg (T_n, H_{m,n}, 0) = \sum_{m=1}^n \varepsilon_m k_m = t_n$$

since $t_1 = 0$. Thus

$$D(T, G, 0) = [t_n] = [s_n].$$

Appendix I.

1. We show that $\operatorname{cl}(H_m) \cap \operatorname{cl}(H_n) = \emptyset$ for $m \neq n$. If $x \in \operatorname{cl}(H_m)$ and $y \in \operatorname{cl}(H_n)$, then

$$||x - y|| \ge ||me_m - ne_n|| - ||me_m - x|| - ||ne_n - y||$$

 $\ge (m^2 + n^2)^{1/2} - \frac{1}{2} - \frac{1}{2} \ge 2^{1/2} - 1 > 0.$

Hence $x \neq y$ and $\operatorname{cl}(H_m) \cap \operatorname{cl}(H_n) = \emptyset$.

2. It also follows that $\operatorname{cl}(G)=\operatorname{cl}(\bigcup_{m=1}^\infty H_m)=\bigcup_{m=1}^\infty\operatorname{cl}(H_m)$. For if $\{g_n\}\subseteq G$ is such that $g_n\to x$ then there is an N such that $\|g_n-g_m\|\leqslant (2^{1/2}-1)/2$ for all $n,m\geqslant N$. Hence there is a p such that $g_n\in H_p$ for all $n\geqslant N$. Hence $x\in\operatorname{cl}(H_p)$ and $\operatorname{cl}(G)\subseteq\bigcup_{m=1}^\infty\operatorname{cl}(H_m)$. Clearly $\bigcup_{m=1}^\infty\operatorname{cl}(H_m)\subseteq\operatorname{cl}(G)$, so $\operatorname{cl}(G)=\bigcup_{m=1}^\infty\operatorname{cl}(H_m)$.

3. We will now show that $\operatorname{cl}(H_m) \cap \operatorname{span}(e_1, \ldots, e_n) = \emptyset$ for all m > n. If $x \in \operatorname{cl}(H_m)$ and $y = \sum_{i=1}^n \alpha_i e_i \in \operatorname{span}(e_1, \ldots, e_n)$ and m > n then

$$||x - y|| = ||me_m - \sum_{i=1}^n \alpha_i e_i|| = (m^2 + \sum_{i=1}^n \alpha_i^2)^{1/2} \ge m > 0.$$

Hence $x \neq y$ and cl $(H_m) \cap \text{span } (e_1, \dots, e_n) = \emptyset$, for m > n.

Appendix II. Let D be an open bounded subset of R^n , f a continuous mapping from cl (D) to R^n and $q \notin f(\partial D)$. Let $x_0 \in X$ be fixed. Let U be the translation defined by $U(x) = x + x_0$. We will show that

$$\deg (fU, U^{-1}(D), q) = \deg (f, D, q).$$

By the product formula for the Brouwer degree [8, Theorem 3.20, p. 75]

$$\deg (fU, U^{-1}(D), q) = \sum_{i} \deg (f, B_{i}, q) \deg (U, U^{-1}(D), p_{i}),$$

where B_i are the bounded components of $R^n \setminus U(\partial U^{-1}(D)) = R^n \setminus \partial D$ and $p_i \in B_i$. But

$$\deg(U, U^{-1}(D), p_i) = \sum \operatorname{sign}|U'(x)|,$$

where |U'(x)| is the determinant of the Jacobian matrix of U at x, and the sum is over all points x in $U^{-1}(p_i) \cap U^{-1}(D)$, i.e. $x = p_i - x_0$, $p_i \in B_i \cap D$. Now U(x + h) - U(x) = h for all $x, h \in R^n$, so U'(x) is the identity matrix and |U'(x)| = 1. Hence,

$$\deg (fU, U^{-1}(D), q) = \sum_{i} \deg (f, B_i, q),$$

where the sum is over the bounded components of D. Thus by the sum formula for the Brouwer degree (see [3, Theorem 6.8, p. 32] or [8, Theorem 3.16.5, p. 72]), deg $(fU, U^{-1}(D), q) = \deg(f, D, q)$.

ACKNOWLDEGEMENT. The author gratefully acknowledges the assistance of Dr. J. J. Koliha in the preparation of this paper.

REFERENCES

- 1. F. E. Browder and W. V. Petryshyn, The topological degree and Galerkin approximation for noncompact operators in Banach spaces, Bull. Amer. Math. Soc. 74 (1968), 641-646. MR 37 #4678.
- 2. ——, Approximation methods and the generalized topological degree for nonlinear mappings in Banach spaces, J. Functional Analysis 3 (1969), 217–245. MR 39 #6126.
- 3. J. Cronin, Fixed points and topological degree in nonlinear analysis, Math. Surveys, no. 11, Amer. Math. Soc., Providence, R. I., 1964. MR 29 #1400.
- 4. P. M. Fitzpatrick, A generalized degree for uniform limits of A-proper mappings, J. Math. Anal. Appl. 35 (1971), 536-552. MR 43 #6788.
- 5. J. Leray and J. Schauder, *Topologie et équations fonctionnelles*, Ann. Sci. École Norm. Sup. 51 (1934), 45-78.
- 6. W. V. Petryshyn, On the approximation solvability of nonlinear equations, Math. Ann. 177 (1968), 156-164. MR 37 #2048.
- 7. ——, Nonlinear equations involving noncompact operators, Proc. Sympos. Pure Math., vol. 18, part 1, Amer. Math. Soc., Providence, R. I., 1970, pp. 206–233. MR 42 #6670.
 - 8. J. T. Schwartz, Non-linear functional analysis, Gordon and Breach, New York, 1969.
- 9. H. S. F. Wong, The topological degree of A-proper maps, Canad. J. Math. 23 (1971), 403-412. MR 44 #5843.
- 10. ——, A product formula for the degree of A-proper maps, J. Functional Analysis 10 (1972), 361-371. MR 49 #9867.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MELBOURNE, PARKVILLE, VICTORIA 3052, AUSTRALIA