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MEAN VALUE THEOREMS FOR ARITHMETIC
FUNCTIONS SIMILAR TO EULER’S PHI-
FUNCTION

KENT WOOLDRIDGE

ABSTRACT. This paper establishes mean value results for multiplicative
functions satisfying f(p®) = p~'f(p) as well as certain conditions on the
differences f(p) — p.

If ¢ is Euler’s function, it is well known [8] that

lim x 'S 2 = ¢2)¢(3)/¢(6),

Jm xS = CR)KG)/(6)
where { denotes the Riemann zeta function. Also, if N(x) denotes the number
of values of n for which ¢(n) < x, then it is known [1], [4], [5] that

xlggo xTIN(x) = ¢£2)8(3)/5(6).

The purpose of this paper is to generalize these two theorems to arithmetical
functions similar to Euler’s function. The most important properties of ¢ in
this regard are that it is a multiplicative function such that ¢(p¢) = p*~'o(p)
for all primes p and all positive integers e and that ¢(p) is “close to” p.

Our first theorem is proved using a simple lemma on Dirichlet series. It is
well known and easy to prove. A proof may be found in a paper by D. G.
Kendall and R. A. Rankin [7, Lemma 4].

LEMMA 1. Let d,d,,... be a sequence of complex numbers such that
S| d,/n is absolutely convergent. Then if

o0 0 0
Xem =3 m* Y d,n* (Res > 1),
m=1 m=1 n=1

we have

[ee]
. -1 _ -1
lim x™' ¥ ¢, = X d,n .
X— 0 mgx n=

THEOREM 1. Let k be a positive integer. Let f be a nonvanishing multiplicative

function such that f(p°¢) = ¢V f(p) for all primes p and all positive integers e.
Suppose that the series
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p—f(p)
M 2550

is absolutely convergent. Then

n o(k)

2 ~ A s
@) n< x;(nk)= lf(”) Kt
and

1 o(k)
3 ~ A log x,
( ) n<x; (%k) lf(n) ke o8x
where

1 1
Ay = (1 T -) .
, ,ﬂ f(p) »p
ProoF. To prove (2) we consider the Dirichlet series

) n 2

no 4 P
,.=n;(%k)=1f(n)n p% (l i T e )

“E( f@K'+‘-%"))

=0 () 1050

We have absolute convergence for Re s > 1. Let
1 ) ( p—f (p)>
S) = 1 - - 1+ S
8 H ( p ,,% Pf(p)

The absolute convergence of (1) shows that the Dirichlet series for g converges
absolutely for s = 1. Thus, by Lemma 1, we have

lim x! 3 g(1) = 4,28,

X—00 n<x;(nk)= lf(n)
The result (3) follows from (2) by partial summation. [

The result (2) was obtained by H. Delange [2], [3] under somewhat different
hypotheses. Instead of the hypothesis that f is nonvanishing he required the
stronger hypothesis that | f(r)| > n for all n. Instead of the hypothesis that the
series (1) is absolutely convergent he used the weaker hypothesis that it is
merely convergent.

If we put f(n) = ¢(n) in Theorem 1, we have

n
— ~ By x
n<x;%k)=l ¢(n) k

and
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~ B, logx,
(4) n<x; (%k) 1 4’(") k08X

where

ik <i2——2;:11) I;I <1 " m)

- (irﬁiiiy@xovam
p-—p+t

plk

E. Landau [8] proved (4) with k = 1. E. C. Titchmarsh [10] first proved (4)
for arbitrary k using complex analysis. T. Estermann [6] and E. Landau [9]
made improvements by elementary methods.

COROLLARY 1. Let f be a nonvanishing multiplicative function such that
f(p°) = p*~Vf(p) for all primes p and all positive integers e. Suppose p — f(p)
= O(p(logp)™®) for some &€ > 0. Then we have (2) and (3).

ProoF. If p — f(p) = O(p(log p)~°), then f(p) > p/2 for large p. Thus

I(p = £(p))/pf(p)| = O(p~'(log p)~°).

Thus the series (1) is absolutely convergent. [

If fis a positive multiplicative function such that f{p) tends to infinity as p
tends to infinity and f(p¢) = p¢~'f(p), it is clear that f(p°) tends to infinity
as p° tends to infinity. Then f{n) tends to infinity with n. Let B(x) denote the
number of positive integers n such that f(n) < x. If the series (1) is absolutely
convergent we know that (2) holds for k = 1, so that n/f(n) has the mean
value 4, where

I;I( f(lp) 1_17)

Thus we would expect the number of n for which f(n) < x to be about the
number of n for which n/4 < x, which is [4x]. Thus we would expect that
x~!B(x) tends to A4 as x tends to infinity. We will prove that this is true under
a slightly stronger hypothesis.

THEOREM 2. Let f be a positive multiplicative function such that f(p°)
= p~Lf(p) for all primes p and all positive integers e. Suppose that the series

) ;Pffﬁmap+ﬂm)

is absolutely convergent. Let B(x) be the number of positive integers n with
f(n) < x. Then
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lim x 'B(x) = 4.
X—>00

PrOOF. Note that, for Res > 1,

1 1 logf(p) _,¢
R T

ogp
logf(p) _, | _ 1 1
< s - j;ogp e du’—|sl-‘;—m‘
— |S| . ip"f(l’) )
rf(p)

Thus, for Res > 1, we can write

PEORES ((EYCRRVCERENS
©)
— -2s = ¢(s )
(1 + 7l + 27 + 572 20)) = EOPE)

where

1 1
PO = T1(1+ 7055~ 55 )

The product defining P(s) converges absolutely for Res > 1, so P is contin-
uous for Res > 1.

It is easy to see that the convergence of the series (5) implies that f(p) tends
to infinity with p.

Since (1 + f(p)~° — p~*) tends to one as p tends to infinity for Res > 1,
the absolute convergence of the series

-s _ —s\-1flogp logf(p)
S e po - (82 - SR

follows from the absolute convergence of (5) and the inequality

logp
7 f(py

I
= j; c&/(p) (1 — us)e ™ du

ogp

logf(p)

< {1 + [s|max(logp, logf(p))}‘ Joas -“du}

< {1 + [sllog(p + f(P)}/p = Vf(p),

where we have assumed p large enough so that f(p) > 1. Thus logarithmic
differentiation shows that P is differentiable at s = 1.
Now we note that for Res > 1,

o0 [ 0
(7) S S = I bpc,’ = I buetoeen,
n=1 m=1 m=1
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where 0 < ¢; < ¢; < -+ are the values of f, and b,, is the number of times f
assumes the value c,,,.
Combining (6) and (7) we have

® 3 pperosen = 20— (50— 1) ey + FA=TW - o,

s— 1

say, where h(s) is continuous for Res > 1 in view of the differentiability of P
at s = 1. Now we let C(x) = B(e*) and note that, for Res > 1,

(9) cm2>l b,, e~ Slogem _f _S“dC(u) — sf ‘wC(u)du _ C(O)

Combining (8) and (9) we see that

f7 e cwan— 20 = He - pa) - 3 by )

cm <1

Now the Wiener-Ikehara Theorem, whose proof is in [11], implies that

lim x 'B(x) = 11m e *C(x) = P(1),

X—>00
which is the desired conclusion. [

COROLLARY 2. Let f be a positive multiplicative function such that f(p°)
= p*~Yf(p) for all primes p and all positive integers e. Suppose that p — f(p)

= O(p(logp)~®) for some ¢ > 0. Then the conclusion of Theorem 2 holds.

If we let f = ¢ in Theorem 2 or Corollary 2 we see that

m TN = 11 (14— - L
lim <7V = T 1+ 52 1) = C@XBIKE)

where N(x) is the number of n with ¢(n) < x. Erdos [5] first proved that
x~!N(x) has a finite limit as x tends to infinity. Once the existence of the limit
is known it is easy to evaluate.
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