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MEAN VALUE THEOREMS FOR ARITHMETIC
FUNCTIONS SIMILAR TO EULER'S PHI-

FUNCTION

KENT WOOLDRIDGE

Abstract. This paper establishes mean value results for multiplicative

functions satisfying f(pe) = pe~Xf(p) as well as certain conditions on the

differences/(/>) -p.

If <f> is Euler's function, it is well known [8] that

lim x-x  2  ¿r = £(2)£(3)/£(6),
*^°° n<x <f>(n)

where f denotes the Riemann zeta function. Also, if N(x) denotes the number

of values of n for which <f>(n) < x, then it is known [1], [4], [5] that

lim x-'A'(x) = r(2)i'(3)/f(6).
x—»00

The purpose of this paper is to generalize these two theorems to arithmetical

functions similar to Euler's function. The most important properties of </> in

this regard are that it is a multiplicative function such that <f>(pe) = pe~x<f>(p)

for all primes p and all positive integers e and that <p(p) is "close to" p.

Our first theorem is proved using a simple lemma on Dirichlet series. It is

well known and easy to prove. A proof may be found in a paper by D. G.

Kendall and R. A. Rankin [7, Lemma 4].

Lemma 1. Let dx, d2, ... be a sequence of complex numbers such that

2^L i djn is absolutely convergent. Then if

00 00 00

2   cmm's =   2   rn~s 2  d„n~'    (Res > 1),
m=\ m=l n=l

we have

oo

lim x~x   2   cm =   2 d„n~x.
x-KX) m<x n=\

Theorem 1. Let k be a positive integer. Let f be a nonvanishing multiplicative

function such that f(pe) = pe~Xf(p) for all primes p and all positive integers e.

Suppose that the series
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(D ÏP-^
p      Pf(P)

is absolutely convergent. Then

n<x;(n,k)=\J(n) K

and

(3) s    i~AkmlogXt
n<x;(n,k)=lf(n) K

where

-a(,+/râ-?)P\k

Proof. To prove (2) we consider the Dirichlet series

n=i;ä)-. mn~s = U v +fú?+J(y)pTs + " ' )

=sKi>(K-+-))
= «^(-f)SS(,+w>

We have absolute convergence for Re í > 1. Let

««■a(-?)ji('+^>
The absolute convergence of (1) shows that the Dirichlet series for g converges

absolutely for s = 1. Thus, by Lemma 1, we have

*^°° n<x;(n,k)=lJKn) K

The result (3) follows from (2) by partial summation.    □

The result (2) was obtained by H. Delange [2], [3] under somewhat different

hypotheses. Instead of the hypothesis that / is nonvanishing he required the

stronger hypothesis that |/(«)| > « for all «. Instead of the hypothesis that the

series (1) is absolutely convergent he used the weaker hypothesis that it is

merely convergent.

If we put/(«) = <f>(«) in Theorem 1, we have

2 ~T\ — &kx
«<*;(«,*)« I 9W

and
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(4) 2        -j-:~Bk\ogx,
n<x;(njc)-l 9W

where

K    P\k

„ / j?2 - 2p + 1 \ „ / _J_'

"iiiV-p + i /Vv    p(p-0.

= n (p\~2p+!\(2W)/m.
p\k\ f <   - P + 1  /

E. Landau [8] proved (4) with k = 1. E. C. Titchmarsh [10] first proved (4)

for arbitrary k using complex analysis. T. Estermann [6] and E. Landau [9]

made improvements by elementary methods.

Corollary 1. Let f be a nonvanishing multiplicative function such that

f(pe) = pe~ f(p) for all primes p and all positive integers e. Suppose p — f(p)

= 0(p(\ogp) e)for some e > 0. Then we have (2) and (3).

Proof. If p - f(p) = 0(p(\og p)~c), then/(/?) > p/2 for large p. Thus

\(P - f(p))/pf(p)\ = 0(p~x(log pD.

Thus the series (1) is absolutely convergent.    □

If / is a positive multiplicative function such that f(p) tends to infinity as p

tends to infinity and/(/?e) = pe~xf(p), it is clear that/(/?*) tends to infinity

as pe tends to infinity. Then f(n) tends to infinity with n. Let B(x) denote the

number of positive integers n such that/(«) < x. If the series (1) is absolutely

convergent we know that (2) holds for k = 1, so that n/f(n) has the mean

value A, where

?0+rá-¿>
Thus we would expect the number of n for which /(/?) < x to be about the

number of n for which n/A < x, which is [Ax]. Thus we would expect that

x~x B(x) tends to A as x tends to infinity. We will prove that this is true under

a slightly stronger hypothesis.

Theorem 2.  Let f be a positive multiplicative function such  that f(pe)

= pe~xf(p) for all primes p and all positive integers e. Suppose that the series

(5) 2^1og(,+/(,))

i$ absolutely convergent. Let B(x) be the number of positive integers n with

f(n) < x. Then
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lim x~xB(x) = A.

Proof. Note that, for Re 5 > 1,

1 1

RpY L
logf(p)

e ""du
\ogp

< \s\

=   5

rnp,e-«du

P-Rp)
pf(p)

11

p f(p)

Thus, for Reí > 1, we can write

(6)

!»

n=\
n(i+/(^r+/(p2r + ---)

p   \
1 +

1

/(/>)
;(1  + />_i +/J-2i + ))   -  «i)?^

where

'»-?(1+/ö?-?>

The product defining P(s) converges absolutely for Reí > 1, so F is contin-

uous f or Re s > 1.

It is easy to see that the convergence of the series (5) implies that f(p) tends

to infinity with p.

Since (1 + f(p)~s - p~s) tends to one as p tends to infinity for Reí > 1,

the absolute convergence of the series

zii+firr-t-'rf^-tMM)
p \ P Rp)   /

follows from the absolute convergence of (5) and the inequality

logP     log/(p)
ps      KpY Ilog/(p)

log/)
(1 - us)e~usdu

< {1 + |s|max(log/>,log/(/>))} L
logf(p)

log/;
e~"du

<   1 \s\\og(p+f(p))}\\/p-l/f(p)\,

where we have assumed p large enough so that f(p) > 1. Thus logarithmic

differentiation shows that P is difierentiable at s = 1.

Now we note that for Reí > 1,

(7)
00

2 /(«)"
n=\

2   bmc-„
m=\

2   bme-sXo^
m=\



MEAN VALUE THEOREMS FOR ARITHMETIC FUNCTIONS 77

where 0 < cx < c2 < • • • are the values of/, and bm is the number of times/

assumes the value cm.

Combining (6) and (7) we have

(8) j_ Ke-.^ _ m. (t(l) _ _±_),(s)+m^a, m

say, where h(s) is continuous for Res > 1 in view of the differentiability of P

at s = 1. Now we let C(x) = B(ex) and note that, for Res > 1,

i z*00 roo
(9) 2   bme-sX°*c" = Jo    e-s"dC(u) = s) e-suC(u)du - C(0).

Combining (8) and (9) we see that

f™ e-s»C(u)du-f^\=l-(c(0)-P(\)-   2   bme-°l0*c-+ h(s)\

Now the Wiener-Ikehara Theorem, whose proof is in [11], implies that

lim x~xB(x) =  lim e~xC(x) = P(l),
X—»00 x—»00

which is the desired conclusion.    D

Corollary 2. Let f be a positive multiplicative function such that f(pe)

— PeXf(p) f°r oil primes p and all positive integers e. Suppose that p — f(p)

= 0(p(\ogp)~e) for some e > 0. Then the conclusion of Theorem 2 holds.

If we let / = <i> in Theorem 2 or Corollary 2 we see that

lim x~xN(x) = n (l + —î-r - I) - r(2)?(3)/£(6),
x-»oo p    \ p  -   1 /?/

where A(x) is the number of n with tj>(«) < x. Erdös [5] first proved that

x~x N(x) has a finite limit as x tends to infinity. Once the existence of the limit

is known it is easy to evaluate.
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