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ISOMETRIC MULTIPLIERS AND ISOMETRIC

ISOMORPHISMS OF lx(S)

CHARLES D. LAHR

Abstract. Let S be a commutative semigroup and 0(S) the multiplier

semigroup of 5. It is shown that T is an isometric multiplier of lx(S) if and

only if there exists an invertible element o S Í2(S ) and a complex number X

of    unit    modulus    such    that    T(a) = \^,xes a(x)Sa,x,    for    each    a

- 2,es «M*x e'l(S)-
Also, if 5, and S2 are commutative semigroups, and L is an isometric

isomorphism of /|(5,) into/,(S2), then it is proved that there exist a

semicharacter x, IxMI = 1 Ior all x £ Sx, and an isomorphism /' of S, onto

S2 such that L(a) = 2 x(*)«(*)*f(x) for each a = 2xes, a(x)sx e 'i(^i)-

1. Introduction. Let S be a commutative semigroup. As usual, /, (S ) denotes

the Banach space of all complex functions a: S —* C such that ||a||

= 2xes \a(x)\ 's finite. Letting 8X E lx(S) represent the point mass at x E S,

an arbitrary element a of /, (S ) is of the form a = 2* es a(x)àx, a(x) E ^ ^or

all x E S; in fact, a(x) ¥= 0 for at most countably many elements of S. The

linear space /, (S ) becomes a commutative Banach algebra under the convolu-

tion product

a*ß=   2       2     ct(u)ß(v)8x,
xSS u,v;uv=x

where a is as above and ß = 2*es ß(x)$x e h (^ )• Further, S denotes the set

of all semicharacters on S, that is, the set of all bounded nonzero functions

X: 5 —» C such that x^) = x(x)x(y) f°r an x, y E S. For a fuller treatment

of lx(S), consult [3].

Given a semigroup S, define Q(S ) to be the set of all functions a: S —> S

having the property that a(xy) = xa(y) for all x, y E S. Under the operation

of composition of functions, Í2(5 ) is a semigroup and is called the multiplier

semigroup of S. Note that S2(S ) always has an identity e, the identity function

on S. Throughout this paper assume that £2(S) is commutative: a sufficient

condition for the commutativity of il(S) is that lx(S) is semisimple. For

weaker conditions implying commutativity and a more extensive discussion of

Í2(5), consult [4, Proposition 4.1].

A bounded linear operator  T: lx(S) —> /,(S) is called a multiplier of
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lx(S) if T(a * ß) = a * T(ß) for all a, ß G lx(S). The set of multipliers of

/[ (S ) is a commutative Banach algebra of operators under operator norm and

is denoted ^(^(S)). An operator T G 9H(/,(S)) is an isometric multiplier of

/, (S ) if F is a one-to-one mapping of /, (S ) onto /, (S ) with the property that

||F(a)|| = ||a|| for all a E lx(S). For a general discussion of multipliers of

Banach algebras and isometric multipliers, see [5].

Each element t = 2oen(S) t(o)80 G /,(ñ(S)) determines a multiplier TT of

lx(S) as follows: defining TT first at each point mass 8X of lx(S) by TT(8X)

= 2oeQ(s) T(a)S(,(x)> x e &> extend TT linearly to the subspace F of lx(S)

spanned by the set of point masses; TT becomes a bounded operator on lx(S)

by observing that TT is bounded on F and that F is dense in lx(S) [4,

Proposition 4.2]. For each a G S2(S ), Ta will denote the multiplier T8 .

If G is a locally compact group, denote by LX(G) the group (Banach)

algebra of Haar integrable functions on G under convolution multiplication.

It is a well-known result that the isometric multipliers of LX(G) consist of

scalar multiples of translation operators [7, Theorem 3]. The next section of

this paper, §2, is devoted to a discussion of the isometric multipliers of /, (S ).

It is shown that if T is an isometric multiplier of lx(S), then there exist

a G Sl(S) and X G C, |ÀJ = 1, such that T = XTa.

Moreover, it is also known that an isometric isomorphism of two group

algebras induces an isomorphism of the underlying groups [6]. In §3, Theorem

3.1, an analogous result is obtained for /,-algebras.

2. Isometric multipliers of lx(S).

Proposition 2.1. Let a G 2(S). Then

(a) Ta is an isometric multiplier of /, (5 ) ;/ and only if a is one-to-one and onto,

and

(b) a is one-to-one and onto if and only if a is invertible in Q(S ).

Proof, (a) Let Ta be an isometric multiplier. Then the one-to-oneness of Ta

implies that Ta(8x) = Ta(8y) if and only if x = y, x, y G S; hence, a(x)

= a(y) if and only if x — y, and thus a is one-to-one. Similarly, o is onto.

If, now, a is one-to-one and onto, then 7^(0^.) = ôCT^, x G S, shows that T0

is a one-to-one map of the set of point masses [8X: x G S) onto itself. Hence,

if  a = S ol(x)8x G lx(S),  then   Ta(a) = 2xeS a(x)8a(x)  is  such  that   Hall
= IIWH.

(b) If a is one-to-one and onto, then for x E S, define a (x) = y if and

only if a(y) = x. Then a~x(xz) = y =» xz = a(y), and a~\z) = r => z

= a(r), which implies that a(xr) = xa(r) = a(y) and hence xr = y since a is

one-to-one, or a~](xz) = y = xa~l(z); that is a~] G &(S).

Conversely, if there exists a~ G fi(S') such that aa~ = e, then a(x)

= a(y) implies x = y (showing a is one-to-one), and for a given z G S,

a(a~ (z)) = z (showing a is onto).    D

Define
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I = [a E iï(S): a is one-to-one and onto}

= {a E ti(S): a is invertible in £2(5)}.

Observe that / is never empty since e E I. The next theorem shows that /

determines the set of isometric multipliers of /, (S ).

Theorem 2.1. Let T E <Üü(lx(S)). Then T is an isometric multiplier of lx(S)

if and only if T = XTa for some complex number X of unit modulus and some

a E I.

Proof. Let T be an isometric multiplier of lx (S ). Then T maps the unit ball

of /, (S ) onto the unit ball of lx (S ), and, in particular, T maps the extreme

points of the unit ball onto the extreme points of the unit ball. Now, the

collection of extreme points of the unit ball of lx(S) is the set [X8X: X G C, |À|

= \,x E S) [2, p. 81]. Hence, let us suppose that T(8X) = XX,8X,, x E S.

Then, for x, y E S,

\xyyS(xy)' - TK) = Sx * T(8y) = 8X * Xy8y, = Xy,8xy,

and also

n*xy) = ¿y * T(SX) = 8y * XX,8X, = Xx,8yx,.

Thus,

(xy)' = xy' = x'y   and    X(xy)- = Xy, = Xx,    for all x, y E S.

Hence, there exists a unique complex number X of unit modulus such that

T(8X) = X8X, for all x E S. Moreover, define a function a: S -» S by a(x)

= x', x E S. From above, the fact that a(xy) = xa(y) = ya(x) for all x, y

E S implies that a E Q(S). Therefore, T = XTa, a G /; by Proposition 2.1;

and the implication is proved.

The converse follows immediately from Proposition 2.1.    □

Part (b) of the following proposition shows that in many cases there may be

very few isometric multipliers, indeed. Part (a) is an instance of WendeTs

result for L, (G ), where G is a discrete group.

Proposition 2.2. (a) // S has an identity e, then I = {x E S: x is invertible

in S). In particular, if S is a group, I = S.

(b) // S is an idempotent semigroup, then I = {e} and the only isometric

multiplier is the identity multiplier.

Proof, (a) If S has an identity e, then S = Q(S) and the result follows

from Proposition 2.1(b).

(b) Let a E ß(5), a ¥= e; hence, there exist x, y E S such that x

¥^ y and a(x) = y. Then xy = xa(x) = a(x ) = a(x) = y implies that y

= y = ya(x) = a(xy) = a(y). Thus, a is not one-to-one and, therefore, is not

in /.    □
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3. Isometric isomorphisms of lx(S). Let Sx and S2 be two commutative

semigroups, and let T = {x E 5, : \x(x)\ = 1 for all x G Sx}.

Theorem 3.1. For each x e T and for each isomorphism i: Sx

-* S2 of Sx onto S2, the linear operator L: lx(Sx) -» lx(S2), defined by L(a)

= 2 x(x)a(x)8¡íx\for each a = S^es a(x)8x G lx(Sx), is an isometric isomor-

phism of /, (Sx ) onto /, (S2 ). Conversely, if L is an isometric isomorphism of

lx (Sx ) onto lx (S2), then there exist x E T and an isomorphism i of Sx onto S2 such

that L(a) = 2^eS, xW«W%)M each a = 1¡xeS¡ a(x)8x G lx(Sx).

Proof. Suppose L is an isometric isomorphism of lx(Sx) onto lx(S2). As in

the proof of Theorem 2.1, L maps the extreme points of the unit ball of lx(Sx)

onto the extreme points of the unit ball of /, (S2); say, L(8X) = \x 8X,, x G Sx,

Xx G C, |Aj - 1. Then for x, y G Sx, XxXy8x,y, = XX8X, * Xy8y = L(8X)

* L(8y) = L(8xy) = Xxy8(xyy implies that x'y' = (xy)' and XxXy = Xxy. Also

note that x,y G Sx, x ¥= y, implies x' ¥= y': for if L(8X) = XX8X,, then for any

À E C, \X\ = 1, L(X8X/XX) = X8x'i hence, the one-to-oneness of L and the

fact that X8X/XX ^ 8y for any X G C imply that L(8y) # X8X, for all A E C,

|A| = 1.
Define a map /': Sx -> S2 by i(x) = x', x G Sx ; then /' is an isomorphism of

Sx onto S2 since x ¥= y implies x' y= y' and L maps the extreme points of /, (Sx )

onto the extreme points of lx(S2).

Finally, define a map x: Sx -» C by x(^) = K> x e ^i • Then the fact that

X(xy) = Xxy = XxXy = x(x)x(y), x,y S Sx, and IxWI = |A,| = 1 for all x
G Sx show that x E T.    D

Theorem 3.2. Let L be an isometric isomorphism of lx(Sx) onto lx(S2). Then

(a) L induces an isomorphism L of c5TL(/] (Sx)) onto ^lt^/, (S2)), and

(b) L maps the isometric multipliers of /, (Sx ) onto the isometric multipliers of

lx (S2). Consequently, if Ta is an isometric multiplier of lx (Sx ), then there exists an

invertible multiplier a' G Í2(S"2) and a complex number Xa of unit modulus such

thatLT„L-x =XaTa,.

Proof, (a) Define L: 9IL(/,(S,)) -» ^(^(S^) by L(T) = LTUX, T

G cDTL(/1(S'i)). To see that L(T) actually belongs to V\L(lx(S2)), observe that

because L, LTl and Fare bounded linear operators, L(T) is a bounded linear

operator. Also, the boundedness and linearity of L(T) necessitate only

verifying its multiplicative behavior on the set of point masses: for x, y G S2

LTL-{(8xy) = LT(L~\8X) * L~%))

= L(L-l(8x)*T(L~l(8y)))

= 8x*LTL~l(8y).

Thus, L(T) G 91L(/| (^)), as claimed. That L is one-to-one and onto is clear,

(b) From Theorem 2.1 and (a), it is sufficient to show that LTaL~] is an
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isometric multiplier of lx(S2) for each isometric multiplier Ta of lx(Sx). Let Ta

be an isometric multiplier of lx(Sx). Since L maps point masses of lx(Sx) to

scalar multiples of point masses of lx (S2) in a one-to-one manner, and since Ta

behaves similarly on lx(Sx), it is only necessary to compute the norm of L(Tg)

at an arbitrary point mass of lx (S2). That is, if x' E S2, it suffices to show that

||L7^L_1(ôy)|| = 1. However, observe that for a given x' E S2 there exist

x E Sx and Xx E C, \XX\ = 1, such that L~X(8X.) = XX8X. Then  Ta(Xx8x)

= Mo« imPlies that L(Ksa(x)) = K(K)\x)'for some (KÏ G c> \(K)'\
= 1, a(x)' E S2(S2); hence, \\LTaL~x(8x,)\\ = |AX(AX)'| = 1. Thus, the exist-

ences of Xa E C and Ta, defined in the statement of the theorem follow from

Theorem 2.1.    D

It should be noted that there is a more general statement of Theorem 3.2(a)

in [1, Theorem 1].

Although an isometric isomorphism of /¡-algebras can be extended to an

isomorphism of the respective multiplier algebras, it is not true that an

isomorphism of multiplier algebras induces an isomorphism of the underlying

/[-algebras. Let Sx be the set of negative integers under the operation of

maximum multiplication; fi(5, ) = Sx U {e} ; that is, Q(SX ) is obtained from Sx

by adjoining an identity. Let S2 = Sx U (e); clearly, fi(S2) = S2. <D1L(/,(5'1))

= /1(S2(5'1)) since lx(Sx) has a bounded approximate identity [4], and

y\L(lx(S2)) = lx(S2). Certainly, 91t(/,(Sx)) is isomorphic (isometrically) to

'DUi/,^)), but lx(Sx) is not isomorphic to lx(S2).
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