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FURTHER RESULTS ON EXPANSIVE MAPPINGS

RICHARD K. WILLIAMS

Abstract. In this paper, several theorems are proved concerning the

concepts of expansiveness and asymptoticity from topological dynamics. The

results are derived using the techniques the author developed in a previous

paper in this journal.

In [8], this author showed how the concept of an expansive homeomorphism

could be generalized to that of an expansive continuous relation (called an

expansive mapping), and that several of the well-known theorems on expan-

sive homeomorphisms generalized in this new setting.

One reason expansive mappings are important is that they furnish the only

routine technique (by using the shift transformation) for producing expansive

homeomorphisms. One surprising result the technique has yielded is a Cech-

homologically trivial continuum supporting an expansive homeomorphism.

(See [8].)
It is useful to know how expansive mappings resemble expansive homeo-

morphisms so that one might gain some insight as to what surprises this

technique might not produce. In this paper, several more well-known theorems

will be generalized by using the tools developed in [8].

For reference purposes, the basic definitions and techniques from [8] will

now be given.

If X is a metric space with metric d, and if/is a homeomorphism of X onto

itself, then / is said to be expansive on X with expansive constant 8 > 0 if

x, y E X, x ¥= y, implies d(f"(x),f"(y)) > 8 for some integer n. Distinct

points x and y are said to be positively (negatively) asymptotic under / if for

each e > 0, there is an integer N such that n > N (n < A' ) implies

d(f"(x), f(y)) < e. Naturally, x and y are doubly asymptotic if they are both

positively and negatively asymptotic.

Let / be a continuous multivalued transformation of X onto itself, (f is

continuous at x E X if for each neighborhood N of f\x), there exists 77 > 0

such that d(x,y) < -q implies f(y) E N.) Henceforth, a continuous multi-

valued transformation will simply be called a mapping.

Definition 1. Let x E X. The orbit of x under f is defined by 0(x)

=   USL-eJ'ix).
Definition 2. Let x E X. A suborbit of x under f is a set of the form
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(x,: x0 = x, x, + 1 G /(x,) for each integer i).

Definition 3. The mapping fis expansive on X with expansive constant 8 > 0

if x, y G X, x ¥= y implies for each suborbit A of x and for each suborbit B of y,

there exist xn G A, yn G B such that d(xn,yn) > 8.

Definition 4. Distinct points x and y are positively (negatively) asymptotic

under f if for each e > 0, there is an integer N such that « > A (« < A ) implies

inl{d(a,b):a Gf"(x),b G f"(y)} < e.
It is clear that these definitions reduce to the standard ones when / is a

homeomorphism.

Let A be bounded and let/be a mapping of A onto itself. Let S(X) be the

set of all single-valued transformations from the integers into A. For each

z G 5(A), denote z(i) by z¡. Let e be a positive number. For z, w G S(X),

define

l \ At \  _L.        V    d(Zi>Wi)p(z,w) = d(z0,wQ) + e 1 —iTi—•
i#0     21'1

Then it is readily verified that p is a metric for S(X). Call the resulting space

S(X,e).

Let S(X,fe) = {z G S(X,e): zi+x G f(z¡) for each i), and let « be the
transformation of S(X, e) onto itself defined by («(z)), = z, + 1 for each i. (Thus

« is the "shift" transformation.)

The spaces S(X, e) and S(X,f, e) and the transformation « have the following

properties:

(1) The product and metric topologies for S(X) are equivalent.

(2) The space S(X,f e) is a closed subset of S(X, e); thus if A is compact, so

is S(X,fe).
(3) The transformation « is a homeomorphism of S(X,f e) onto itself.

(4) The transformation « is an expansive homeomorphism on S(X,fe) if

and only if / is an expansive mapping on A.

(5) If A is homeomorphic to Y under g, then S(X,f,e) is homeomorphic to

S(Y,gfg~x,e) under the transformation H defined by (H(z))¡ = g(z¡). Also,

«2 = HhxH~l, where hx and «2 are the shift transformations on S(X,f e) and

S(Y,gfg~x,e), respectively.

(6) If z, w G S(X,f,e), if z, ¥= w¡, and if z and w axe positively (negatively)

asymptotic under «, then z, and w¡ are positively (negatively) asymptotic under

/
These are the basic results needed to derive the previously mentioned

generalizations.

Of the first six theorems, only Theorem 3 will be proven. The proofs of the

other five are either similar to the proof of Theorem 3 or are routine

modifications of the proofs of their counterparts in the literature. The last

three theorems, which are the most important ones and whose proofs are the

least trivial, will be proven completely.

Theorem 1. Let X have at least one limit point, and let f be an expansive

homeomorphism on X with expansive constant 8. Then m # « implies

sup{d(fm(x),f"(x)): x G X) > 8. (See [1, Theorem 2].)
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Theorem 2. Let f be a single-valued uniformly continuous function which maps

X onto itself. Then x and y are positively (negatively) asymptotic under f if and

only if they are positively (negatively) asymptotic under f for n > 0. (See [3,

Theorem 10.26].)

Theorem 3. Let X be compact, and let f be a single-valued expansive mapping

on X. If p is a nonisolated periodic point under / then there exists x such that p

and x are either positively or negatively asymptotic under f. (See [5, Theorem 2.4].)

Proof. It is shown in [6] that/is expansive if and only if/" is expansive for

n ¥= 0. Thus we may assume that p is fixed. Let z G S(X,f, 1) be defined by

z, = p for each i. Let tj > 0 be given. Choose N such that

„   diam (X)      r/

Choose q ¥= p E X such that d(fi(q),fi(p)) < tj/6 for i = 0, 1, ..., 2A/.
There exists w E S(X,f, 1) such that w_N = q. Then

/      x        v   d(zi,wi) d(zj,w/)

6|i|</v2l'l     |/|>w      2l'l

< 6 ' 3 + 2 = "'

and so z is nonisolated in S(X,f 1). Also z is fixed under /¡, so that there eixsts

v E S(X,f, 1) such that z and v are either positively or negatively asymptotic

under h, by Theorem 2.4 of [5]. By property 6, there exists x G X such that x

and p are either positively or negatively asymptotic under / An application of

Theorem 2 completes the proof.

Theorem 4. // X is compact and infinite, and iff is a single-valued expansive

mapping on X, there exists a point that is not periodic under f. (See the proof of

Theorem 2 of [2].)

The following theorem generalizes Theorem 1 of this paper.

Theorem 5. Let X have at least one limit point, and let f be a single-valued

expansive mapping on X with expansive constant 8. Let m > 0, n > 0, m # n.

Then sup[d(fm(x),fn(x)): x E X) > 8.

Theorem 6. Let X be compact, and let f be a single-valued expansive mapping

on X. Then f has only a finite number of points of each period. (See [5, Theorem

3.1].)

Theorem 7. Let X be compact, and let f be an expansive mapping on X with

expansive constant 8. Then for each 9 such that 0 < 9 < 8, there exists a positive

integer k such that d(x,y) > 9 implies that for each suborbit A of x and for each

suborbit B of y, there exists n such that \n\ < k and d(xn,yn) > 5. (See [1,

Theorem 5].)
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Proof. By Theorem 3 of [8], the least upper bound of expansive constants

for / is not an expansive constant. Choose 8' > 8 such that 8' is an expansive

constant for/ and choose a positive integer /' such that 2M/i < 8' — 8, where

M = diam (A). Let 0 < 9 < 8 < 8'. Using Theorem 5 of [1], select a positive

integer k such that p(z,w) > 9 implies p(h"(z), h"(w)) > 8' for some « such

that |«| < k. Let d(x,y) > 9 and let A be a suborbit of x and let F be a

suborbit of y. Define z,w G S(X,f l/i) in the natural way from the x„'s in A

and the y„'s in F, i.e., let z„ = x„ and wn = y„ for each «. Now p(z, w)

> í/(z0,w0) = i/(x,>0 > 9, so

p(«"(z),«"(V» = d(zn,wn) + } 2        "+'    "+7   > «',
1 >#0 2m

where |«| < k. Hence, d(zn,wn) > 5, i.e., d(xn,yn) > ô.    Q.E.D.

The following theorem is obviously related to Theorem 1 of this paper.

Theorem 8. Let X have at least one limit point, and let f be an expansive

mapping on X. Let 9 be the least upper bound of the expansive constants for f.

Then m ¥= « implies

sup {sup {d(a,b): a G fm(x), b G f(x)}: x G A} > 9.

Proof. Let 0 < a < ß < 9. Then a and ß are expansive constants for /

Choose a positive integer i such that 2 M/i < ß — a, where M = diam (A ).

Since ß is an expansive constant for / it is an expansive constant for h on

S(X,f, l/i). Clearly S(X,f l/i) has at least one limit point if A does, so by
Theorem 1, there exists z G S(X,f l/i) such that p(hm(z),h"(z)) > ß, i.e.,

A(,      ,  \ x.  1   V   d^Zm+j'Zn+j) v.   n
d(zm,zn) + 1Zo-¿r;,->/*.

Hence, d(zm,z„) > a, and since zm G fm(z0), z„ G /"(z0),

sup {sup {¿/(a, b): a G /m(x),fe G f(x)}: x G A} > a.

But this is true for any a < 9. Hence,

sup{sup{d(a,b): a G fm(x),b G f"(x)}: x G A} > 6».

Corollary. // A ¡s compact and infinite, and iff is an expansive mapping on

X with expansive constant 8, then m ¥= n implies

sup {sup [d (a, b): a G fm(x),b G f"(x)}: x G X} > 8.

(See [1, Theorem 2].)

Proof. By Theorem 3 of [8], the least upper bound of the expansive

constants is not an expansive constant. The result now follows from Theorem

8.
A different proof of the preceding corollary can be found in [8, p. 658].

Theorem 9. Let X be compact and let f be a single-valued mapping of X onto
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itself which is expansive on X — A, where A is a finite subset of X. Then f is

expansive on X. (See [1, Theorem 3].)

Proof. Let 8 be an expansive constant for / on X — A. Let A consist of

nonperiodic points xx, x2, ..., xn, and periodic points yx, y2, ..., ym. Let y¡

be  of period p¡.  Define z' G S(X,f,e)  by zjL = y¡,j = 0, ±1,_  (This

defines z', since / is single-valued.) Let z, w E S(X,f,E) — W/LxO(z') with

z 7e w. Let 1 < i < m, and let 0 < j < p¡. Since z £ 0(z' ), there is an

integer ky such that zk p¡+j ¥= y¡, and so k < /cy- implies z^+i # ^/. Let

N = min{kyp¡ +/}. We now show that there exists Nx such that k < A/j

implies zÄ G -4. Let 0 < / < m, and let k <C N. Choose integers r and / such

that k = rp¡ + j, where 0 < j < pl,. Since /c < A, /y?, + / < A7 < A;yp,- + /, so

that r < /Cy. Hence, 2^+/ ^ 7;, t-C-> ¿* ^^z- Also, each x, appears as a

coordinate of z at most once, since x, is nonperiodic. Hence, there exists Nx

such that k <i Nx, implies zk & A. Also, there exists N2 such that A: < N2

implies wk $. A. Since z ^ w, there exists A3 such that k < A3 implies

z& ** w*- Finally, if M = min[Nx,N2,N3], k < M implies zk =£ wk, zk & A,

wk G A. Choose k < M. Since the components of z form a suborbit of zk and

the components of w form a suborbit of wk, there is an integer a such that

^*+fl.^+fl)>«. so, p(hk+a(z),hk+a(w)) > d(zk+a,wk+a) > 8, and A is

expansive on S(X,f,e) - Um=xO(z¡). By the theorem in [7], h is expansive on

S(X,fe), so by property 4,/is expansive on X.

If A contains no periodic points, then h is expansive on S(X,f, e). For let

A = {xx,x2,... xn), where each x¡ is nonperiodic. Let z,wE S(XJ,e) with

z =£ w. As before, there is an integer A7 such that k < A7 implies zÄ g /<, wt

G ^4, zk =£ wk. Let A: < N. As above, there is an integer a such that

p(ha(z), h"(w)) > Ô, so that h is expansive on S(X,f,e), and hence, / is

expansive on X.
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